2500MHz-2700MHz, 150W, 28V High Power RF LDMOS FETs

Description

The ITCH27150C2 is a 150-watt, internally matched LDMOS FET, designed for multicarrier WCDMA/PCS/DCS/LTE base station and ISM applications with frequencies from 2500 to 2700 MHz. It Can be used in Class AB/B and Class C for all typical cellular base station modulation formats.

•Typical Performance (On Innogration fixture with device soldered):

VDD = 28 Volts, I_{DQ} = 1000 mA, Pulse CW, Pulse Width=100 us, Duty cycle=10% .

Frequency	Gp (dB)	P _{-1dB} (dBm)	η _D @P ₋₁ (%)	P _{-3dB} (dBm)	η _D @Ρ ₋₃ (%)
2500 MHz	14.7	51.9	47.4	52.6	47.6
2600 MHz	14.9	52.2	47.5	52.9	48.3
2700 MHz	14.8	51.6	50.5	52.3	50.1

•Typical Performance (On Test Fixture with device soldered):

 V_{DD} =28Volts, I_{DQ} = 50 mA, CW.

Frequency	$\textbf{P}_{\text{OUT}}~(\textbf{W})$	Gp (dB)	η _D (%)
2500 MHz	170	11.7	52.1
2600 MHz	170	11.0	55.1
2700 MHz	170	10.4	58.6

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Internally Matched for Ease of Use
- Excellent thermal stability, low HCI drift

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	70	Vdc
GateSource Voltage	V _{GS}	-10 to +10	Vdc
Operating Voltage	V _{DD}	+32	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _c	+150	°C
Operating Junction Temperature	TJ	+225	°C
Table 2. Thermal Characteristics			
Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Rejc	0.2	°C4V
T_{C} = 85°C, T_{J} =200°C, DC test	RejC	0.3	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
------------------	-------

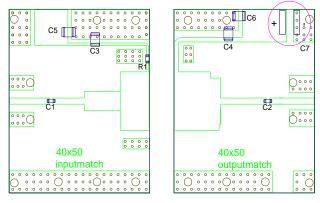
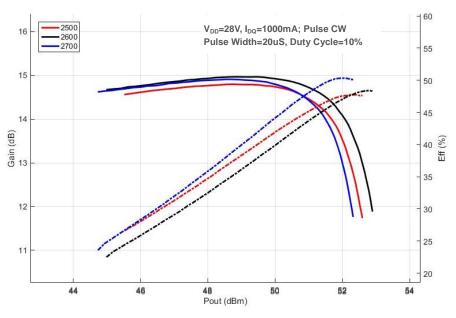
Document Number: ITCH27150C2 Preliminary Datasheet V1.0

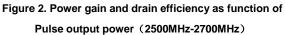
Human Body Model (per JESD22A114)		Class 2			
Table 4. Electrical Characteristics (TA = 25°C unless otherw	ise noted)				
Characteristic	Symbol	Min	Тур	Max	Unit
DC Characteristics					
Drain-Source Breakdown Voltage	V _{DSS} 65 70			V	
(V _{GS} =0V; I _D =1mA)					
Zero Gate Voltage Drain Leakage Current				40	•
$(V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V})$	I _{DSS}			10	μA
GateSource Leakage Current				4	μΑ
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}			ļ	
Gate Threshold Voltage			1.0		V
$(V_{DS} = 28V, I_{D} = 600 \text{ uA})$	$V_{GS}(th)$		1.8		V
Gate Quiescent Voltage					
$(V_{\text{DD}}$ = 28 V, I_{DQ} = 1000 mA, Measured in Functional Test)	V _{GS(Q)}	2.3	2.8	3.3	V
Functional Tests (On Innogration demo, 50 ohm system) : V_{DD} =	= 28 Vdc, I _{DQ} = 1000	0 mA, f = 2700	MHz, Pulse	CW, Pulse W	/idth=20 us,
Duty cycle=10% .					

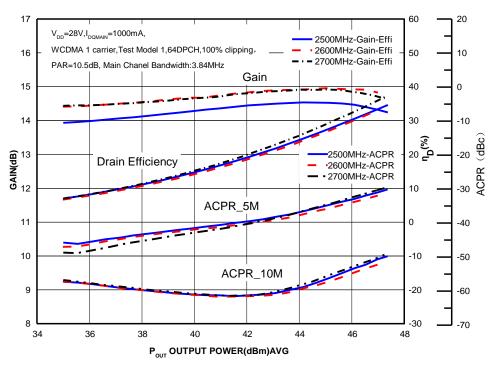
Power Gain (Maximum Gain)	Gp		14.8		dB
1 dB Compression Point	P _{-1dB}		51.6		dBm
3dB Compression Point	P _{-3dB}		52.3		dBm
Drain Efficiency@P3dB	η_{D}		50.1		%
Input Return Loss	IRL		-7		dB
Load Mismatch (On Innogration Test Fixture, 50 ohm system): V _{DD} = 28 Vdc, I _{DQ} = 1000 mA, f = 2700 MHz					

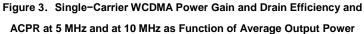
VSWR 10:1 at 150W pulse CW Output Power	No Device Degradation
---	-----------------------

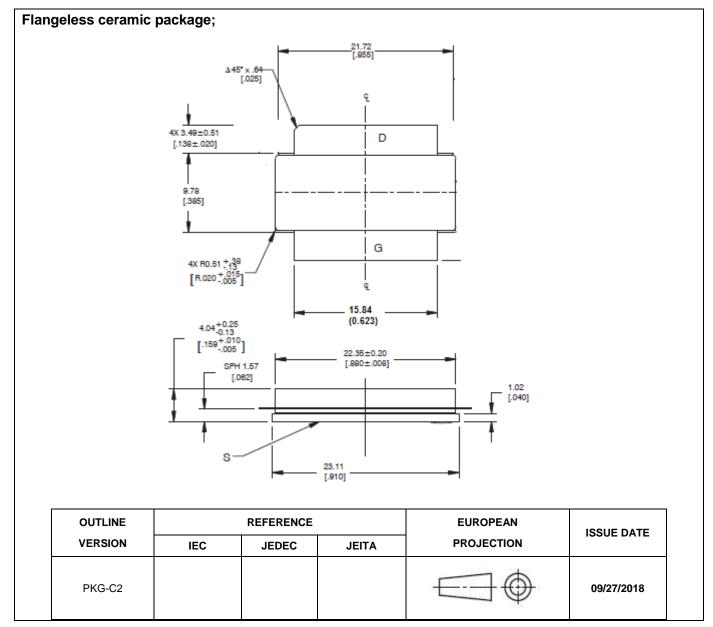
Reference Circuit of Test Fixture Assembly Diagram


Figure 1. Test Circuit Component Layout


Table 1. Test Circuit Component Designations and Values


Component	Description	Suggested Manufacturer	P/N
C1,C2	Ceramic Capacitor,8.2pF	ATC	600F
C3,C4	Ceramic Capacitor,8.2pF	ATC	800B
C5,C6	10uF 100V chip Capacitor		
C7	Electrolytic Capacitor ,100uF,50V		
R1	Chip Resistor,10 Ω		
РСВ	0.762mm [0.030"] thick, εr=3.48, Rogers RO4350B, 1 oz. copper		


TYPICAL CHARACTERISTICS

Package Outline

Revision history

Table 6. Document revision history

Date	Revision	Datasheet Status
2018/12/04	Rev 1.0	Preliminary Datasheet

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.