25W, 28V High Power RF LDMOS FETs

Description

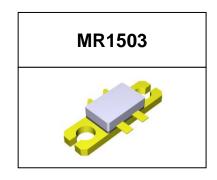
The MR1507 is a 25-watt, unmatched, push pull LDMOS FETs, designed for Wide-band and Mobile radio applications with frequencies under 1500MHz. It can be used in Class AB/B and Class C for all typical modulation formats.

- Typical Performance (On Innogration fixture with device soldered): V_{DD} = 28 Volts, I_{DQ} = 200 mA, CW.

Frequency	Gp (dB)	P _{-1dB} (W)	η _D @P ₋₁ (%)
1000 MHz	22	25	62

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift


Suitable Applications

- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)
- 118 -140MHz (Avionics)

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant
- 136-174MHz (Commercial ground communication)
- 160-230MHz (TV VHF III)
- 30-512MHz (Jammer, Ground/Air communication)
- 470-860MHz (TV UHF)

Table 1. Maximum Ratings

Rating	Syr	Symbol		Value		Unit	
DrainSource Voltage	V	/ _{DSS}	+95			Vdc	
GateSource Voltage	١	/ _{GS}	-10 to +10			Vdc	
Operating Voltage	١	/ _{DD}	+40			Vdc	
Storage Temperature Range	Т	stg	-65 to +150			°C	
Case Operating Temperature		T _c	+150			°C	
Operating Junction Temperature		T,	+225			°C	
Table 2. Thermal Characteristics							
Characteristic		Symbol	Value		U	Unit	
Thermal Resistance, Junction to Case	Dair		4.5		2014		
T_{C} = 85°C, T_{J} =200°C, DC test		Rejc	1.5		°C/W		
Table 3. ESD Protection Characteristics	·						
Test Methodology		Class					
Human Body Model (per JESD22A114)		Class 2					
Table 4. Electrical Characteristics (T _A = 25 $^{\circ}$ C	unless otherwise	noted)					
Characteristic		Symbol	Min	Тур	Max	Unit	

Document Number: MR1503 Preliminary Datasheet V1.0

DC Characteristics (per half section)					
Drain-Source Voltage	V	00	05		V
V_{GS} =0, I_{DS} =1.0mA	$V_{(BR)DSS}$	90	95		v
Zero Gate Voltage Drain Leakage Current	I _{DSS}			1	μΑ
$(V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V})$					
GateSource Leakage Current					•
$(V_{GS} = 9 V, V_{DS} = 0 V)$	I _{GSS}			1	μA
Gate Threshold Voltage	V _{GS} (th)		2.11		V
$(V_{DS} = 28V, I_{D} = 600 \ \mu A)$					
Common Source Input Capacitance			10.0		- 5
(V _{GS} = 0V, V _{DS} =28 V, f = 1 MHz)	C _{ISS}		16.2		pF
Common Source Output Capacitance	C _{oss}		5.9		pF
$(V_{GS} = 0V, V_{DS} = 28 V, f = 1 MHz)$					μ
Common Source Feedback Capacitance	0		0.5		pF
(V _{GS} = 0V, V _{DS} =28 V, f = 1 MHz)	C _{RSS}		0.5		
Functional Tests (On Demo Test Fixture, 50 ohm system) V_{DD} = 28 V	dc, I _{DQ} = 200 m	nA, f = 1000 M	Hz, CW Signa	Measurement	ts.
Power Gain	Gp		22		dB
Drain Efficiency@P1dB	η_{D}		62		%
1 dB Compression Point	P-1dB		25		W
Input Return Loss	IRL		-10		dB
Load Mismatch (In Innogration Test Fixture, 50 ohm system): V _{DD} = 28 Vdc, I _{DQ} = 200 mA, f = 1000 MHz					
VSWR 10:1 at 20W pulse CW Output Power	No Device Degradation				

Package Outline

Flanged ceramic package; 2 mounting holes; 4 leads

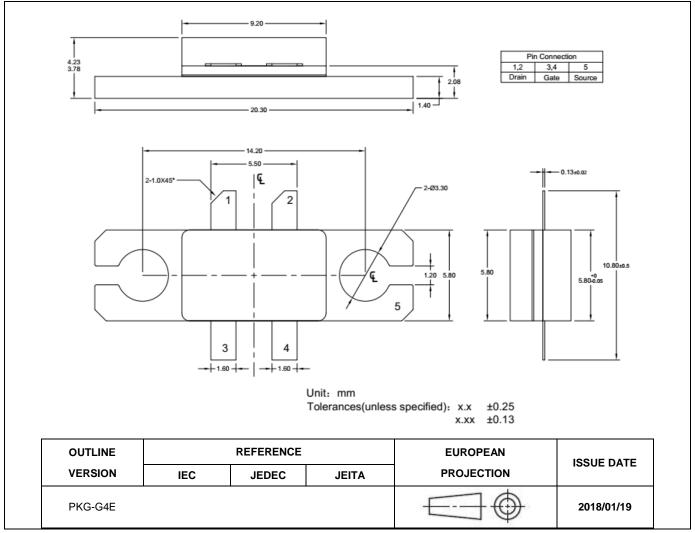


Figure 1. Package Outline PKG-G4E

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2018/8/15	Rev 1.0	Product datasheet creation

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.