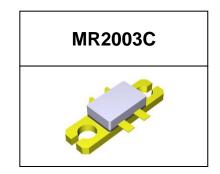
18W, 12.5V High Power RF LDMOS FETs


Description

The MR2003C is a 18-watt, Push-Pull configuration, unmatched LDMOS FETs, designed for ISM and Mobile radio applications with frequencies under 2GHz. It can be used in Class AB/B and Class C for all typical modulation formats.

It can also operate at 13.6V, 14V etc with increased power capability.

- Typical Performance (On Innogration fixture with device soldered): V_{DD} = 12.5 Volts, I_{DQ} = 150 mA, CW.

Freq(MHz)	Pin(dBm)	Pout(dBm)	Pout(W)	IDS(A)	Gain(dB)	Eff(%)
100	28	42.4	17.4	2.34	14.4	59.4%
150	26.8	42.5	17.8	2.4	15.7	59.3%
200	26.9	42.4	17.4	2.38	15.5	58.4%
250	28.8	42.8	19.1	2.45	14	62.2%
300	27.2	42.5	17.8	2.15	15.3	66.2%
350	25.4	42	15.8	1.89	16.6	67.1%
400	26.6	41.9	15.5	1.86	15.3	66.6%
450	28.3	42.4	17.4	2.31	14.1	60.2%
500	27.8	42.3	17.0	2.24	14.5	60.7%
550	27.7	42	15.8	2.12	14.3	59.8%

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift

Suitable Applications

- HF Amplifier
- UHF Amplifier
- Vehicle radio

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant
- VHF Amplifier
- Wideband Amplifier
- Beidou Navigation

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit	
DrainSource Voltage	V _{DSS}	+65	Vdc	
GateSource Voltage	V _{GS}	-10 to +10		
Operating Voltage	V _{dd}	+28		
Storage Temperature Range	Tstg	-65 to +150	°C	
Case Operating Temperature	T _c	+150		
Operating Junction Temperature	L	+225	°C	
Table 2. Thermal Characteristics				
Characteristic	Symbol	Value	Unit	

Document Number: MR2003C Preliminary Datasheet V1.1

Thermal Resistance, Junction to Case						
T _C = 85°C, T _J =200°C, DC test	Rejc	Rejc 1		°C/	W	
Table 3. ESD Protection Characteristics	•			L		
Test Methodology			Class			
Human Body Model (per JESD22A114)		Class 2				
Table 4. Electrical Characteristics (T _A = 25 °C unless otherwise noted)						
Characteristic	Symbol	Min	Тур	Max	Unit	
DC Characteristics (per half section)	·					
Drain-Source Voltage		65	70		v	
V _{GS} =0, I _{DS} =1.0mA	$V_{(BR)DSS}$					
Zero Gate Voltage Drain Leakage Current	l	DSS		1	μΑ	
$(V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V})$	IDSS					
GateSource Leakage Current	I _{GSS}			1	μΑ	
$(V_{GS} = 9 \text{ V}, V_{DS} = 0 \text{ V})$	GSS					
Gate Threshold Voltage	V _{gs} (th)		2.17		V	
$(V_{DS} = 28V, I_D = 600 \ \mu A)$	V GS(UI)					
Common Source Input Capacitance	C _{ISS}		15.7		pF	
$(V_{GS} = 0V, V_{DS} = 14 V, f = 1 MHz)$					P1	
Common Source Output Capacitance	C _{oss}		6.0		pF	
$(V_{GS} = 0V, V_{DS} = 14 V, f = 1 MHz)$			0.0		P.	
Common Source Feedback Capacitance	C _{RSS}		0.42		pF	
$(V_{GS} = 0V, V_{DS} = 14 V, f = 1 MHz)$	-100				F.	
Common Source Input Capacitance	C _{ISS}		16.0		pF	
$(V_{GS} = 0V, V_{DS} = 28 V, f = 1 MHz)$						
Common Source Output Capacitance	Coss		4.6		pF	
$(V_{GS} = 0V, V_{DS} = 28 V, f = 1 MHz)$	- 000					
Common Source Feedback Capacitance	C _{RSS}		0.38		pF	
$(V_{GS} = 0V, V_{DS} = 28 V, f = 1 MHz)$	- 1100					

Functional Tests (On Demo Test Fixture, 50 ohm system) V_{DD} = 12.5 Vdc, I_{DQ} = 150mA, f = 500 MHz ,CW Signal Measurements,

Pin=27.8dBm

Power Gain	Gp		14.5		dB
Drain Efficiency@Pout	η_{D}		60		%
Output Power	Pout		17		W
Input Return Loss	IRL		-5		dB
Load Mismatch (In Innogration Test Fixture, 50 ohm system): V _{DD} = 12.5 Vdc, I _{DQ} = 150 mA, f = 500 MHz					
VSWR 10:1 at 18W pulse CW Output Power No Device Degradation					

TYPICAL CHARACTERISTICS

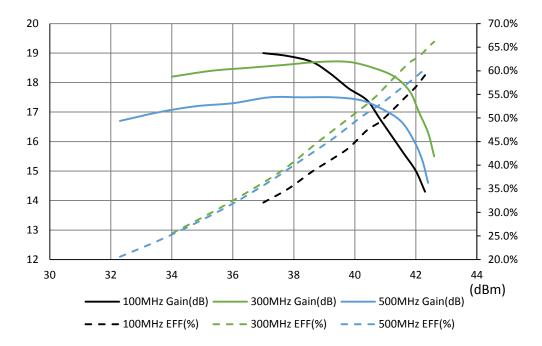
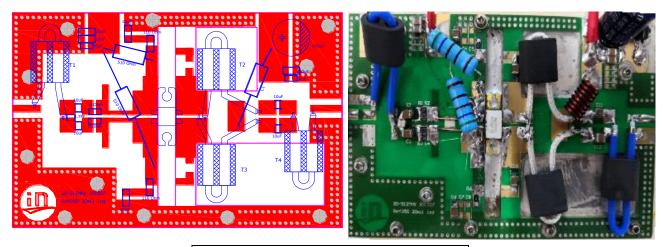



Figure 1: Power gain and drain efficiency as function of Pulse output power

Figure 2: 108-512MHz wideband application circuit picture (PCB Materials: Roger 4350B, 30Mil, Layout file upon request)

BOM			
L1	6uH 5A air core inductance		
T1, T4	magnetic core: BN-61-102		
	RF cable: SF-086-50, 70mm length		
Т2, Т3	magnetic core: BN-61-102		
	RF cable: SFF-25-1.5, 70mm		
	length		

Package Outline

Flanged ceramic package; 2 mounting holes; 4 leads

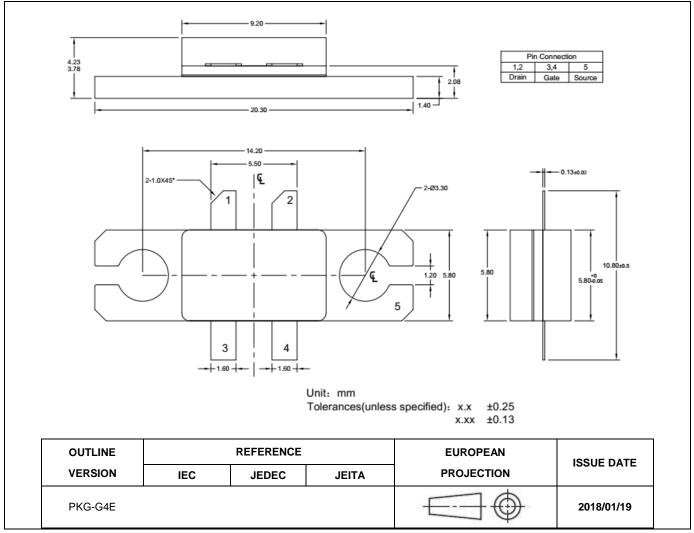


Figure 1. Package Outline PKG-G4E

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2018/6/14	Rev 1.0	Preliminary Datasheet
2018/9/16	Rev 1.1	12.5V data added

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.