
350W, 50V High Power RF LDMOS FETs

Description

The MX0535VPX is a 350-watt capable, high performance, unmatched LDMOS FET, designed for wide-band commercial and industrial applications with frequencies HF to 0.5 GHz

It is featured for high power and high ruggedness, suitable for Industrial, Scientific and Medical application, as well as FM radio, VHF TV and Aerospace applications.

Freq (MHz)	P3dB (W)	Gain (dB)	Eff (%)
325	380	16.2	67.3

Typical performance(on 500MHz test board with device soldered):
 V_{DD} = 50 Volts, I_{DQ} = 200 mA, CW.

Freq (MHz)	P3dB (W)	Gain (dB)	Eff (%)
500	363	13.3	67.4

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

Suitable Applications

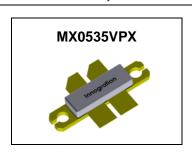

- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)
- 160-230MHz (TV VHF III)
- 136-174MHz (Commercial ground communication)
- Laser Exciter
- Synchrotron
- MRI
- · Plasma generator
- Weather Radar

Table 1. Maximum Ratings

•			
Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+125	Vdc
GateSource Voltage	V _{GS}	-10 to +10	Vdc
Operating Voltage	V _{DD}	+55	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
	- ,		- '

Load 10:1 All phase angles, at 350W Pulsed CW Output Power

Document Number: MX0535VPX Preliminary Datasheet V1.0

Thermal Resistance, Junction to Case	Rejc	0.25		°C/W	
T_C = 85°C, T_J =200°C, DC test		0.20		G, II	
Table 3. ESD Protection Characteristics					
Test Methodology		Class			
Human Body Model (per JESD22A114)			Class 2		
Table 4. Electrical Characteristics ($T_A = 25$ °C unless other	erwise noted)				
Characteristic	Symbol	Min	Тур	Max	Unit
DC Characteristics (per half section)					
Drain-Source Voltage	V		122		V
V_{GS} =0, I_{DS} =1.0 mA	$V_{(BR)DSS}$		122		V
Zero Gate Voltage Drain Leakage Current				4	^
$(V_{DS} = 75V, V_{GS} = 0 V)$	IDSS			1	μΑ
Zero Gate Voltage Drain Leakage Current				4	^
$(V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V})$	I _{DSS}			1	μΑ
GateSource Leakage Current		I _{GSS} ——		1	μΑ
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	IGSS				
Gate Threshold Voltage	V (46)		2.65		V
$(V_{DS} = 50V, I_D = 600 \mu A)$	$V_{\rm GS}({ m th})$		2.65		V
Gate Quiescent Voltage	V		3.35		V
(V_{DD} = 50 V, I_{D} = 200 mA, Measured in Functional Test)	$V_{GS(Q)}$				
Drain source on state resistance	Pdo(op)		352		mΩ
(Vds=0.1V, Vgs=10V)	Rds(on)		332		11122
Common Source Input Capacitance		C			
$(V_{GS} = 0V, V_{DS} = 40 V, f = 1 MHz)$	C _{ISS}		141		pF
Common Source Output Capacitance			42		"F
$(V_{GS} = 0V, V_{DS} = 40 V, f = 1 MHz)$	C _{oss}		42		pF
Common Source Feedback Capacitance			0.7		
$(V_{GS} = 0V, V_{DS} = 40 V, f = 1 MHz)$	C_{RSS}		0.7		pF
Load Mismatch (In Innogration Test Fixture, 50 ohm system):	$V_{DD} = 50 \text{ Vdc}, I_{DQ} = 10$	200 mA, f = 50	0MHz, pulse v	vidth:100us, du	ty cycle:10%

2	/	6
_	/	U

No Device Degradation

Reference Circuit of Test Fixture Assembly Diagram

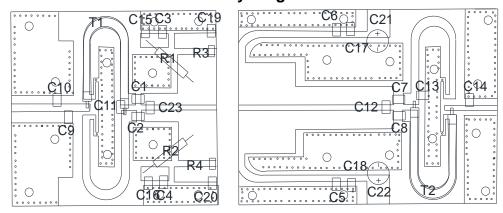


Figure 1. Test Circuit Component Layout (325M)

Table 1. Test Circuit Component Designations and Values (325M)

Part	description	Model
C1~C6	220PF	DLC70B
C13	3PF	DLC70B
C7, C8	100PF	ATC800B
C9	20PF	DLC70B
C10	1.5PF	DLC70B
C11	15PF	DLC70B
C12	12PF	DLC70B
C14	6.8PF	ATC800B
C15~c18	10UF	100V/10UF
C21, c22	470UF	63V/470UF
C23	18PF	DLC70B
R1	100Ω	
R2	16 Ω	1206
T1,T2	55mm	SF-86-25

TYPICAL CHARACTERISTICS

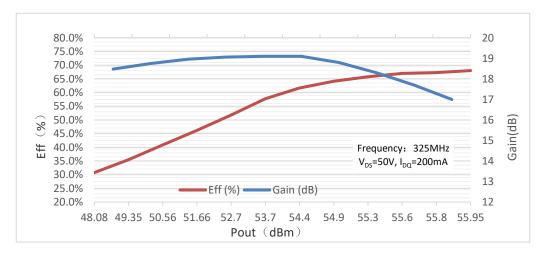


Figure 2: Power Gain and Drain Efficiency as Function of CW Power (325M)

Reference Circuit of Test Fixture Assembly Diagram

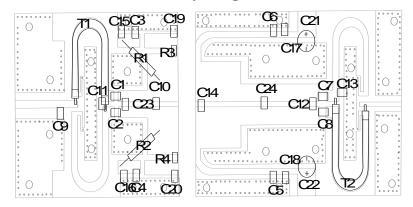


Figure 3. Test Circuit Component Layout (500M)

Table 6. Test Circuit Component Designations and Values (500M)

Part	description	Model
C1~C6	220PF	DLC70B
C13	3PF	DLC70B
C7,C8	100PF	ATC800B
C9,C13	3PF	DLC70B
C10,C11,C12	15PF	DLC70B
C14	10PF	ATC800B
C15~c18	10UF	100V/10UF
C21,c22	470UF	63V/470UF
C23	18PF	DLC70B
C24	6.8PF	DLC70B
R1,R2	100Ω	
R3,R4	16 Ω	1206
T1,T2	55mm	SF-86-25

TYPICAL CHARACTERISTICS

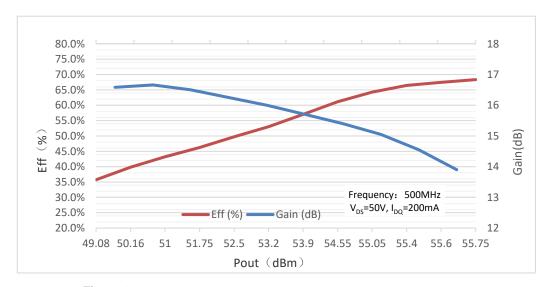
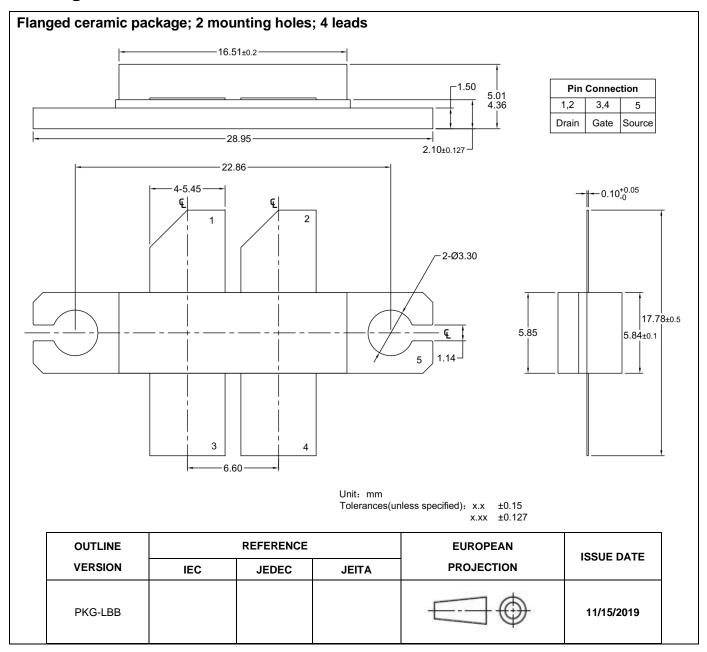



Figure 4: Power Gain and Drain Efficiency as Function of CW Power (500M)

Package Outline

Document Number: MX0535VPX Preliminary Datasheet V1.0

Revision history

Table 7. Document revision history

Date	Revision	Datasheet Status
2019/11/18	Rev 1.0	Preliminary Datasheet Creation

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.