Gallium Nitride 28V 130W, RF Power Transistor

Description

The NU3013H is a 130W 28V, GaN HEMT, designed for multiple applications with frequencies up to 2.7GHz.

There is no guarantee of performance when this part is used in applications designed Outside of these frequencies.

 \bullet Typical performance (on Innogration narrow band fixture with device soldered) V_{DD} =28V I_{DQ} =100mA, Vgs=-2.48V, CW.

Frequency(MHz)	Gp (dB)	P _{SAT} (W)	Efficiency (%)
1650	14	150	76

NU3013H

Applications and Features

- Suitable for wireless communication infrastructure, wideband amplifier, EMC testing, ISM etc.
- High Efficiency and Linear Gain Operations
- Thermally Enhanced Industry Standard Package
- High Reliability Metallization Process
- · Excellent thermal Stability and Excellent Ruggedness
- Compliant to Restriction of Hazardous Substances (RoHS)
 Directive 2002/95/EC

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage (28V)
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings (Not simultaneous, TC = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
DrainSource Voltage	$V_{\scriptscriptstyle DSS}$	150	Vdc
GateSource Voltage	V _{GS}	-10,+2	Vdc
Operating Voltage	V _{DD}	40	Vdc
Maximum Forward Gate Current	Igmax	30.2	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _c	+150	°C
Operating Junction Temperature(See note 1)	T,	+225	°C
Total Device Power Dissipation (Derated above 25°C, see note 2)	Pdiss	140	W

- 1. Continuous operation at maximum junction temperature will affect MTTF
- 2. Bias Conditions should also satisfy the following expression: Pdiss < (Tj Tc) / RJC and Tc = Tcase

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Rejc-dc	1.4	C/W
T _C = 85°C, T _J =200°C, DC Power Dissipation(See note 1)	NθJC-DC	1.4	

ReJC-DC is tested at only DC condition, it is related to the highest thermal resistor value among all test conditions. It might be

NU3013H GaN TRANSISTOR

differently lower in different RF operation conditions like CW signal ,pulsed RF signal etc.

Table 3. Electrical Characteristics (T_C = 25 °C unless otherwise noted)

DC Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	V _{GS} =-8V; I _{DS} =30.2mA	V_{DSS}	150			V
Gate Threshold Voltage	$V_{DS} = 28V, I_{D} = 30.2 \text{mA}$	V _{GS} (th)		-2.7		V
Gate Quiescent Voltage	V _{DS} =28V, I _{DS} =100mA, Measured in Functional Test	V _{GS(Q)}		-2.48		V

Functional Tests (In Innogration narrow band Test Fixture, 50 ohm system) : V_{DD} = 28 Vdc, I_{DQ} = 100 mA, f = 1650 MHz, CW

Characteristic	Symbol	Min	Тур	Max	Unit
Power Gain	Gp		14		dB
Drain Efficiency @ P _{SAT}	Eff	70	76		%
Saturated Power	P _{SAT}	120	150		W
Input Return Loss	IRL		-7		dB
Mismatch stress at all phases (Device no damage)	VSWR		10:1		Ψ

Reference Circuit of Test Fixture Assembly Diagram

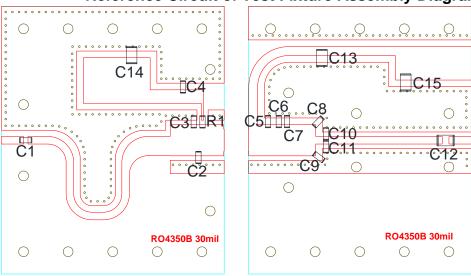


Figure 1. Test Circuit Component Layout (1550-1650MHz)

Table 4. Test Circuit Component Designations and Values

Part	description	Model
C1,C4	33pF	ATC600F
C2,C3,C5	2.7pF	ATC600F
C6,C9,C10,C11	0.5pF	ATC600F
C7,C8	0.2pF	ATC600F
C12,C13	39pF	ATC800B
C14,C15	10uF	10uF /50V
R1	16Ω	0805

NU3013H GaN TRANSISTOR

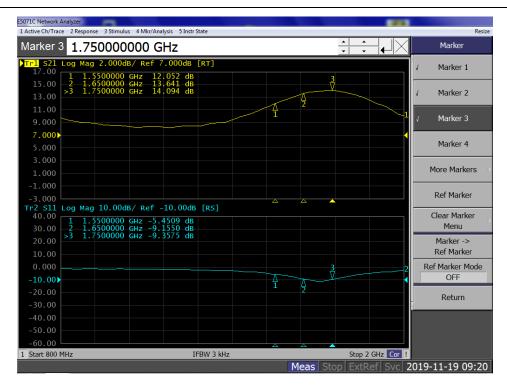


Figure 2. Network Analyzer S11/S21 output

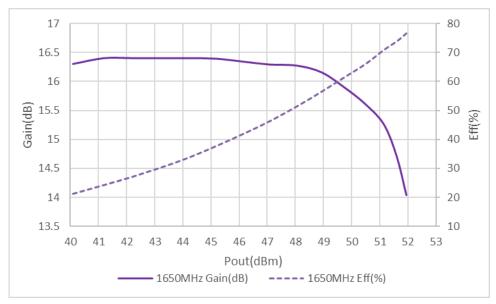


Figure 3. Gain and Efficiency as function of output power at 1650MHz

NU3013H GaN TRANSISTOR

Package Outline

Flanged ceramic package; 2 leads

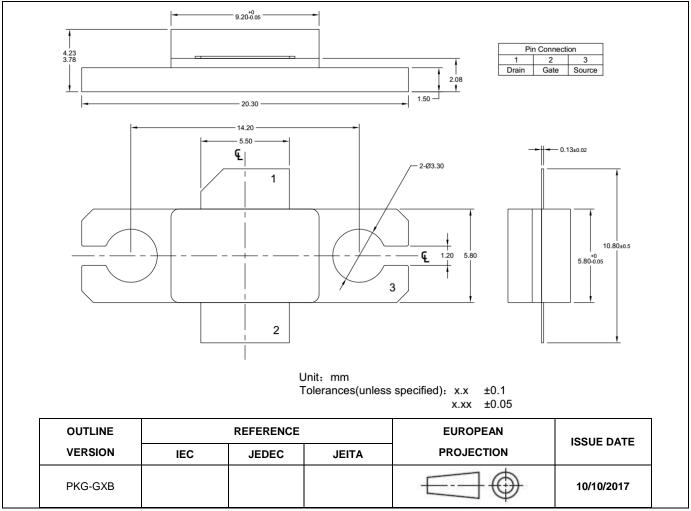


Figure 1. Package Outline PKG-G2E

Document Number: NU3013H Preliminary Datasheet V1.0

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2019/12/27	V1.0	Preliminary Datasheet Creation

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.