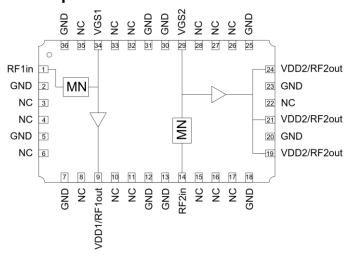


Innogration (Suzhou) Co., Ltd.

30MHz-700MHz, 20W, 28V GaN PA Module

Description


The GMAHR307-20B is a 20-watt peak power, integrated Power Amplifier Module, designed for broad band and broadcast applications, with frequencies from 30 to 700 MHz. The module is $50~\Omega$ input and requires minimal external components. The module offers a much smaller footprint than traditional discrete component solutions.

Product Features

- Operating Frequency Range: 30 700 MHz
 Operating Drain Voltage: +28 V (Up to 32V)
- 50 Ω Input
- Gain at 6 W avg.: ≥34 dB
 Saturated Power: ≥43 dBm
- Single Ended Device
- 6x10 mm Surface Mount Package
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Pin Configuration and Description

Top View

Pin No.	Symbol	Description
9	VDD1/RF OUT	Transistor 1, Drain Bias & RF1 Output
34	VGS1	Transistor 1, Gate Bias
1	RF1 IN	Transistor 1, RF Input
19, 21, 24	VDD2/RF OUT	Transistor 2, Drain Bias & RF2 Output
29	VGS2	Transistor 2, Gate Bias
14	RF2 IN	Transistor 2, RF2 Input
3, 4, 6, 8, 10, 11, 15-17, 22, 26-28, 32, 33, 35	NC	No connection
2, 5, 7, 12, 13, 18, 20, 23, 25, 30, 31, 36 Package Base	GND	DC/RF Ground. Must be soldered to EVB ground plane over array of vias for thermal and RF performance. Solder voids under Pkg Base will result in excessive junction temperatures causing permanent damage.

Innogration (Suzhou) Co., Ltd.

Document Number: GMAHR307-20B Preliminary Datasheet V1.1

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	$V_{ t DSS}$	150	Vdc
GateSource Voltage	V _{GS}	-10 to +2	Vdc
Operating Voltage	V _{DD}	+40	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Rejc	TBD	°C/W
T _C = 87°C, T _J =175°C, DC test	Reju	IBD	-C/VV

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model(HBM) (JEDEC Standard JS-001-2012)	TBD
Charged Device Model (CDM) (JEDEC Standard JESD22-C101F)	TBD

Table 4. Electrical Characteristics

Parameter	Condition	Min	Тур	Max	Unit
Frequency Range		30		700	MHz
Power Gain @ Pout=6W Avg.	Driver + Final Stage		34		dB
P _{SAT}			45		dBm
Drain Efficiency @ P _{SAT}			55		%
Unless otherwise noted: TA = 25°C, VDD =28 V, Pulse Width=100 us, Duty cycle=10%					

 $\textbf{Load Mismatch of per Section (On Test Fixture, 50 ohm system):} \quad V_{DD} = 28 \text{ V}, \text{ } I_{DQ} = 130 \text{ mA}, \text{ } f = 0.7 \text{ GHz}$

VSWR 10:1 at P3dB pulse CW Output Power	No Device Degradation
---	-----------------------

Reference Circuit of Test Fixture Assembly Diagram

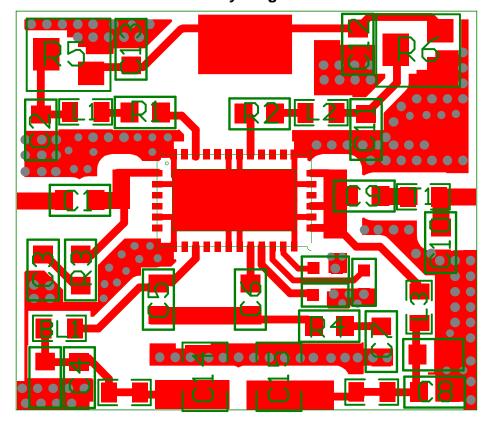


Figure 1. Test Circuit Component Layout

Table 5. Test Circuit Component Designations and Values

Part	description	Model
C1, C9	2.2NF	ATC800B
C5, C6	180PF	DLC70B
C2, C4, C8, C11	240pF	DLC70B
C3, C7, C12, C13	1NF	50V/1NF
C14, C15	10UF	50V/10UF
C10	3.9pF	DLC70B
R1, R2, R3, R4	36Ω	0603
R5, R6	5000Ω	3224W
L1, L2	33NH	0805
BL1	BLM MPZ 470R	1206
L3	100NH	线艺
T1	4:1 40mm	SF-86-50,BN-61-2402
PCB	0.508mm [0.020"] thick, εr=3.48, Rogers RO4350B, 1 oz. copper	

Innogration (Suzhou) Co., Ltd.

TYPICAL CHARACTERISTICS

Figure 2. Power Gain and Output Power vs. Frequency (Pin=15dBm)

Test Condition: Pulse CW, Pulse width=100us, Duty Cycle=10%

Drive Stage: VGS1=-2.08V, VDS1=12V, IDQ1=100mA

Output Stage: VGS2=-2.38V, VDS2=28V, IDQ2=130mA

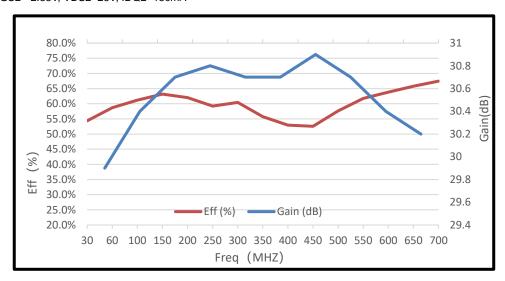
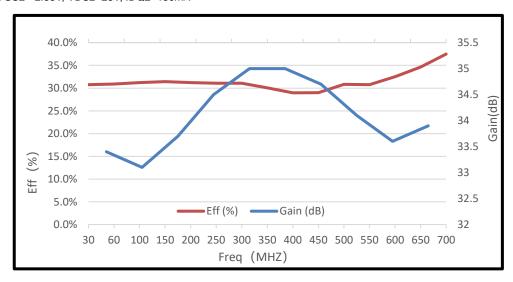
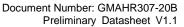
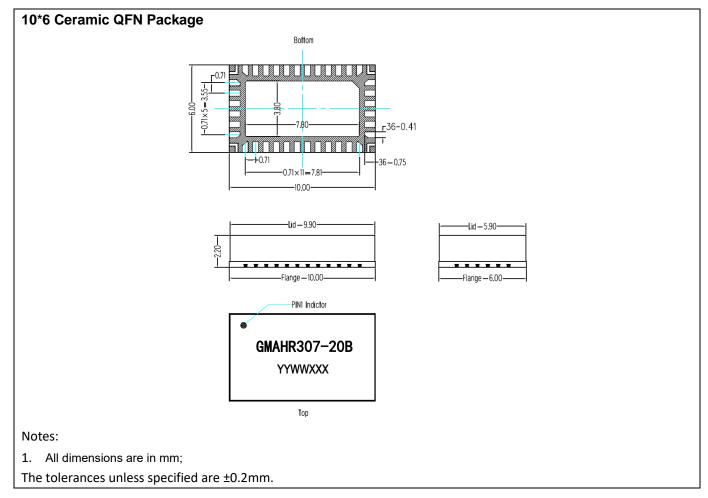
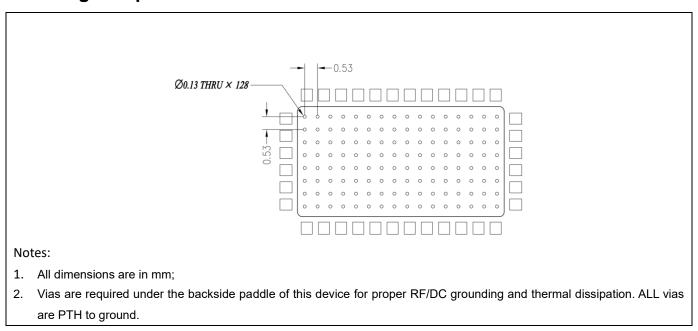




Figure 3. Power Gain and Added efficiency vs. Frequency at Pout=38dBm (WCDMA signal, PAR=5.6dB)


Test Condition:

Drive Stage: VGS1=-2.08V, VDS1=12V, IDQ1=100mA
Output Stage: VGS2=-2.38V, VDS2=28V, IDQ2=130mA



Mounting Footprint Pattern

Document Number: GMAHR307-20B Preliminary Datasheet V1.1

Revision history

Table 6. Document revision history

Date	Revision	Datasheet Status
2019/09/23	Rev 1.0	Preliminary Datasheet
2022/03/15	Rev 1.1	Preliminary Datasheet

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.