

4.8-5.0GHz, 35W, 28V GaN PA Module

Description

The GMAH4850-33 is a 35-watt peak power, integrated 2-stage Power Amplifier Module, designed for massive MIMO applications, with frequencies from 4.8 to 5.0 GHz. The module is 50 Ω input and output and requires minimal external components. The module offers a much smaller footprint than traditional discrete component solutions. The module incorporates a Doherty final stage delivering high power added efficiency for the entire module at 5.6 W average power.

• Typical 1C WCDMA Performance of Doherty Demo (On Innogration fixture with device soldered through grounding vias):

VDS= 28V, Vdriver=-2.4V(25mA), Vmain=-2.19V(50mA), Vpeak=-4V					
Pout(dBm)	Freq (MHz) Ppeak(dBm) Gain (dB) EFF (%) ACPR (
	4800	46.11	29.8	45.3	-26.5
37.5	4900	46.04	29.9	45.8	-28.2
	5000	45.91	29.9	45.3	-29.8

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- 50 Ω Input / Output
- Integrated Doherty Final Stage
- 6x10 mm Surface Mount Package
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Pin Configuration and Description

Pin No.	Symbol	Description
1	VD1	Driver Amplifier, Drain Bias
4	VG1	Driver Amplifier, Gate Bias
6	RF IN	RF Input
11	VG3	Carrier Amplifier, Gate Bias
16	Vb	VBW Enhancement Lead
19	RF OUT	RF Output
27	VD2	Peaking Amplifier, Drain Bias
32	VG2	Peaking Amplifier, Gate Bias

Document Number: GMAH4850-33 Preliminary Datasheet V1.0

3,8-10,14-15,17,21,22,24,26,28,29,33-35	NC	No connection
2,5,7,12,13,18,20,23,25,30,31,36	GND	Internal Grounding, recommend connecting to Epad ground
		DC/RF Ground. Must be soldered to EVB ground plane over array of
Package Base	GND	vias for thermal and RF performance. Solder voids under Pkg Base will
_		result in excessive junction temperatures causing permanent damage.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	150	Vdc
GateSource Voltage	V _{GS}	-10 to +2	Vdc
Operating Voltage	V _{DD}	+40	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	T₃	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance@Average Power, Junction to Case			
Tcase=+85℃, Tch=126.5℃, CW Test, Pdiss=9W,	Rejc	4.7	°C/W
Pout=5W,			

Notes:

- (1) The thermal resistance is acquired by our company's FEA model, which was calibrated by IR measurement, the value shall be applied to reliability.
- (2) The reference Tcase temperature 85° C is apply on the backside of package.
- (3) If the device soldering onto the 20mil Rogers PCB with 50 × Φ0.4mm via hole beneath the package backside and the reference temperature Tcase (85°C) apply on the groundside of the PCB, the total thermal resistance R θ JC=TBD°C/W.
- (4) The power dissipation in the table is overall dissipation which include Carrier PA, Peaking PA and driver PA.

Table 3. ESD Protection Characteristics

Test Methodology	Class Voltage
Human Body Model(HBM) (JEDEC Standard JESD-A114)	±225V
Charged Device Model (CDM) (JEDEC Standard JESD22-C101F)	±1000V

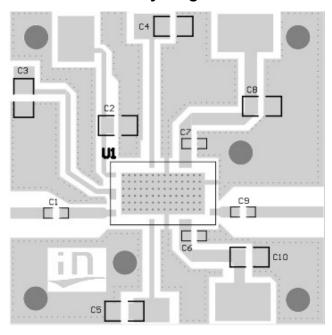
Table 4. Electrical Characteristics

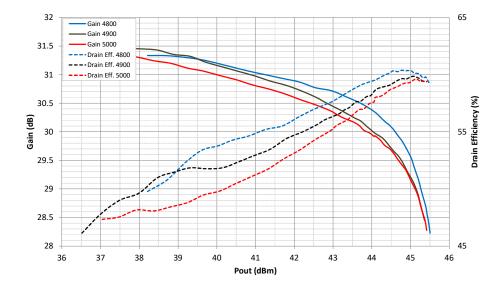
Parameter	Condition	Min	Тур	Max	Unit
Frequency Range		4.8		5.0	GHz
Driver Quiescent Current (I _{DQ1})			25		mA
Carrier Quiescent Current (I _{DQ3})			50		mA
Peak PA Gate Quiescent Voltage (V _{G2})			-4		V
Power Gain @ P1dB	Freq=5.0GHz		29		dB
P1dB	Freq=5.0GHz		44.8		dBm
P3dB	Freq=5.0GHz		45.5		dBm
Drain Efficiency@ P3dB Freq=5.0GHz			55.5		%
Unless otherwise noted: TA = 25°C, V _{D1} , 2 =	·	cycle=10%	55.5		

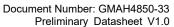
Load Mismatch of per Section (On Test Fixture, 50 ohm system): $V_{D1.2} = 28 \text{ V}$, $I_{DQ1} = 25 \text{ mA}$, $I_{DQ3} = 50 \text{ mA}$, $V_{G2} = -4 \text{ V}$, f = 5.0 GHz

VSWR 10:1 at P3dB pulse CW Output Power	No Device Degradation
---	-----------------------

Reference Circuit of Test Fixture Assembly Diagram




Figure 1. Test Circuit Component Layout


Table 5. Test Circuit Component Designations and Values

Component	Value	Description
U1	GMAH4850_33	PA Module
C1、C7、C9	3.9pF	ATC600S
C2、C3、C4、C5、C8	10uF	TDK1206

TYPICAL CHARACTERISTICS

Figure 2. Power Gain and Drain Efficiency as Function of Pulse Output Power

	VDS= 28V, Vpeak=-4.0V,IDQ1=25mA, IDQ2=50mA				
Freq (MHz)	P-1(dBm)	P-1Gain (dB)	P-3(dBm)	EFF (%)	
4800	44.32	30.2	45.50	59.2	
4900	43.14	30.4	45.36	59.4	
5000	42.93	30.4	45.42	59.4	

Figure 2. S11/S21 output from Network analyzer

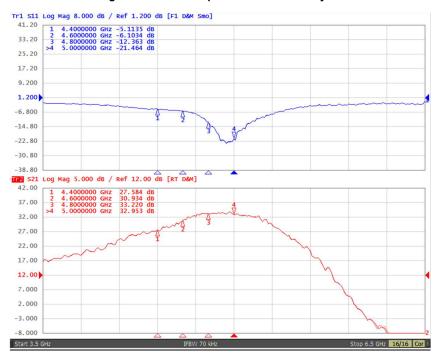
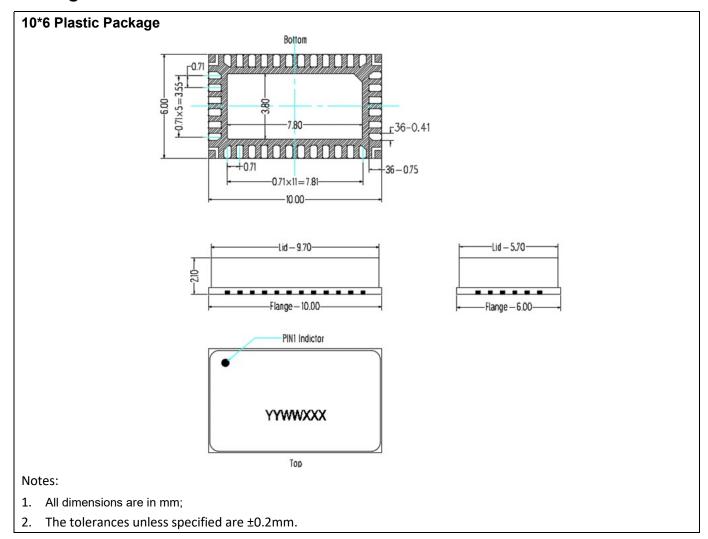
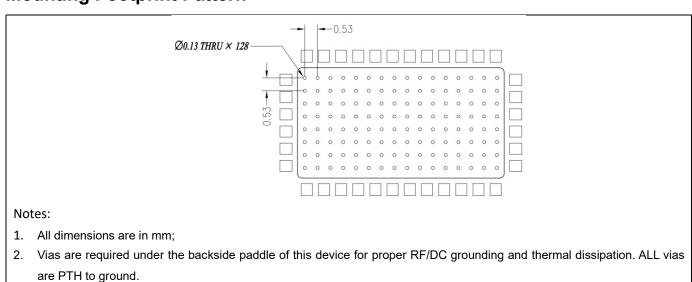



Figure 3: ACPR,efficiency,power gain, peak power across the band @37.5dBm output



Document Number: GMAH4850-33 Preliminary Datasheet V1.0

Package Dimensions

Mounting Footprint Pattern

Document Number: GMAH4850-33 Preliminary Datasheet V1.0

Revision history

Table 6. Document revision history

Date	Revision	Datasheet Status
2020/10/14	Rev 1.0 Preliminary datasheet creation	

Application data based on HJ-20-25

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.