Gallium Nitride 50V, 200W, 3.3-3.6GHz RF Power Transistor

Description

The STAV36200AY2 is a single ended 200watt, GaN HEMT, ideal for applications from 3.3 to 3.6GHz.

It is an input matched transistor capable of delivering Psat 225W.

It can support CW, pulse or any modulated signal.

There is no guarantee of performance when this part is used outside of stated frequencies.

- Typical pulse CW performance across 3.3-3.6GHz
- VDD = 48 Vdc, IDQ = 210mA, Pulse width=20us, duty cycle=20%, Tc=25°C

(On innogration application board with device soldered)

Frequency	P3dB(W)	Eff(%)@P3dB
3300	230	56
3450	220	57
3600	202	57

• WCMDA 3GPP TM1 64 DPCH 9.9 dB PAR @ 0.01% CCDF. VDS = 48 V, IDQ = 210 mA,

(On innogration Class AB application board with device soldered)

Freq(MHz)	Pout(dBm)	CCDF(dB	Ppeak(dBm)	Ppeak(W)	ACPR(dBc)	Gain(dB)	Efficiency(%)
3300	46.43	7.17	53.60	228.86	-35.90	13.37	29.73
3450	46.47	6.98	53.44	221.05	-34.91	13.03	30.90
3600	46.45	6.79	53.24	210.89	-33.68	13.43	32.68

Applications

- Sub-4GHz pulse or CW amplifier
- 5G base station amplifier

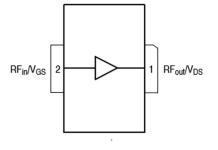
Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically –5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Figure 1: Pin Connection definition

Transparent top view (Backside grounding for source)


4. Turn off VGS

Turning the device OFF

3. Reduce VDS down to 0 V

2. Reduce VGS down to VP, typically -5 V

1. Turn RF power off

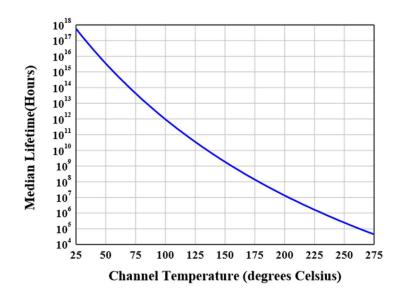
POUT = 44W across 3.3-3.6G

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V _{GS}	-8 to +0.5	Vdc
Operating Voltage	V _{DD}	55	Vdc
Maximum gate current	lgs	25	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _c	+150	°C
Operating Junction Temperature	TJ	+225	°C
Fable 2. Thermal Characteristics			·
Characteristic	Symbol	Value	Unit

Thermal Resistance, Junction to Case by FEA	Rejc	1 9	°C /W
T _C = 85°C, at Pd=80W	NojC	1.0	0700

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)


DC Characteristics (Each path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=25mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 25mA	V _{GS(th)}	-4		-2	V
Gate Quiescent Voltage	VDS =50V, IDS=210mA, Measured in Functional Test V _{GS(Q)} -3.2			V		

Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	3.45GHz, Pout=200W pulse CW					
	for each path	VSWR		10:1		
	All phase,	VOWIX		10.1		
	No device damages					

Figure 2: Median Lifetime vs. Channel Temperature

Figure 3: Efficiency and power gain as function of Pout

(VDD = 48Vdc, IDQ = 210 mA, Pulse width=20us, duty cycle=20%)

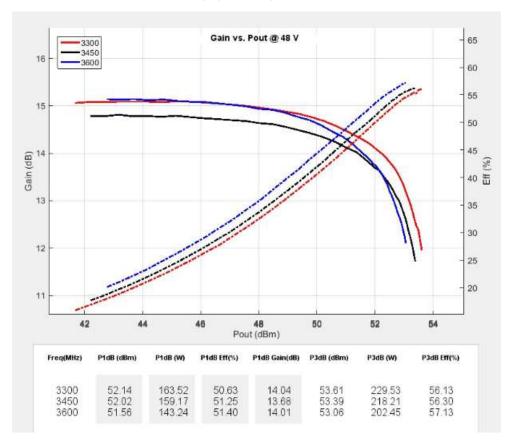


Figure 4: S11 / S21 output from network analyzer

Figure 5: Picture of application board of 3.3-3.6GHz

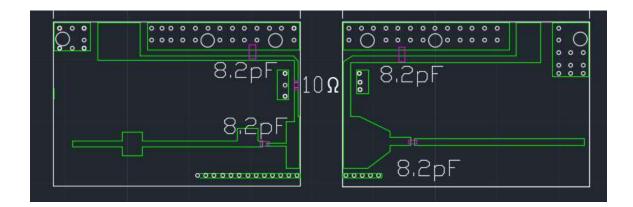



Table 4. Bill of materials of application board (PCB layout upon request)

BOM				
C1,C2,C3,C4	8.2pF	ATC600F		
C5,C6	10uF/63V			
C7	470uF/63V			
R1	10 ohm			

Unit: mm [inch] Tolerance .xx +/- 0.01 .xxx +/- 0.005 inches

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2020/3/27	V1.0	Preliminary Datasheet Creation

Application data based on: LWH-20-05

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.