NU3020V

Gallium Nitride 50V 200W, RF Power Transistor

Description

The NU3020V is a 200W single ended unmatched GaN HEMT, designed for multiple applications with frequencies up to 2.2GHz.

There is no guarantee of performance when this part is used in applications designed Outside of these frequencies.

 \bullet Typical performance (on Innogration narrow band production fixture with device screwed) V_{DD} =50V I_{DQ} =100mA, CW

Freq(MHz)	Gp (dB)	P _{3dB} W)	Efficiency (%)
2000	15	200	65

Typical performance (on L band 1.2-1.4GHz fixture with device soldered): V_{DD}=50V I_{DQ}=100mA,
Pout=P3dB

Freq(MHz)	Pin(dBm)	Pout(dBm)	Pout(W)	Gain(dB)	EFF(%)
1200	37.8	53.95	249	16.1	71.3%
1300	37.5	53.68	233	16.2	76.2%
1400	36.9	52.54	179	15.7	74.1%

• Typical performance (on wideband 0.8-2GHz fixture with device soldered): V_{DD}=50V I_{DQ}=100mA, CW, Pout=Psat

		_		_	
Freq (MHz)	Pin	Pout(dBm)	Pout (W)	Gain (dB)	Eff (%)
	(dBm)				
800	38.5	51.8	151.4	13.3	55.8%
900	36.9	51.8	151.4	14.9	53.6%
1000	38.4	51.8	151.4	13.4	58.8%
1100	39.8	51.8	151.4	12	64.5%
1200	38.7	51.8	151.4	13.1	64.5%
1300	37.6	51.8	151.4	14.2	55.3%
1400	37.9	51.8	151.4	13.9	56.2%
1500	40.1	51.8	151.4	11.7	57.1%
1600	39.8	51.8	151.4	12	52.0%
1700	39.3	51.8	151.4	12.5	53.5%
1800	39.4	51.8	151.4	12.4	55.8%
1900	39.6	51.8	151.4	12.2	55.5%
2000	40.1	51.8	151.4	11.7	54.2%

Applications and Features

- Suitable for wireless communication infrastructure, wideband amplifier, EMC testing, ISM etc.
- High Efficiency and Linear Gain Operations
- High Reliability Metallization Process
- Excellent thermal Stability and Excellent Ruggedness
- Compliant to Restriction of Hazardous Substances

Document Number: NU3020V Preliminary Datasheet V1.2

• Thermally Enhanced Industry Standard Package

(RoHS) Directive 2002/95/EC

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically –5 V
- 2. Turn on VDS to nominal supply voltage (50V)
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V _{GS}	-8 to 0	Vdc
Operating Voltage	V_{DD}	0 to 55	Vdc
Maximum forward gate current	Igf	25.2	mA
Storage Temperature Range	Tstg	-65 to +150	С
Case Operating Temperature	T _C	-55 to +150	С
Operating Junction Temperature	TJ	+225	С

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Rejc	1.2	CAN
T _C = 85°C, T _J =200°C, DC Power Dissipation, FEA	KejC	1.3	C/W

Table 3. Electrical Characteristics ($T_C = 25^{\circ}C$ unless otherwise noted)

DC Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	V _{GS} =-8V; I _{DS} =25.2mA	V _{DSS}		200		V
Gate Threshold Voltage	V _{DS} = 10V, I _D = 25.2mA	V _{GS} (th)		-3.4		V
Gate Quiescent Voltage	V _{DS} =50V, I _{DS} =100mA, Measured in Functional Test	V _{GS(Q)}		-3.3		V

Functional Tests (In Innogration broadband Test Fixture, 50 ohm system): V_{DD} = 50 Vdc, I_{DQ} = 100 mA, f = 2000 MHz, CW

Characteristic	Symbol	Min	Тур	Max	Unit
Power Gain @ P3dB	Gp		15		dB
Drain Efficiency@P3dBt	Eff		65		%
3dB Compressed point	P3dB		200		W
Input Return Loss	IRL		-7		dB
Mismatch stress at all phases(No device damage)	VSWR		10:1		Ψ

Reference Circuit of Test Fixture Assembly Diagram

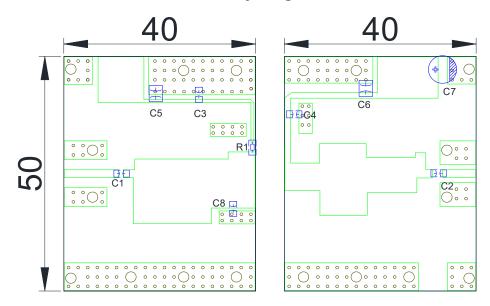


Figure 1. Test Circuit Component Layout (1200MHz~21400MHz)

Table 4. Test Circuit Component Designations and Values

Component	Description	Suggested Manufacturer	
C1, C3, C4	39 pF	ATC600F	
C2	39 pF	ATC800B	
C8	2.0 pF	ATC600F	
C5, C6	10 uF	1210	
C7	1000 uF		
R1	10 Ohm	0805	
PCB	0.76mm [0.030"] thick, εr=3.6, Rogers R4350, 1 oz. copper		

Figure 2. Pulse RF performance (1100MHz~1500MHz)

Pulse CW Pulse width 100us, duty cycle 10%

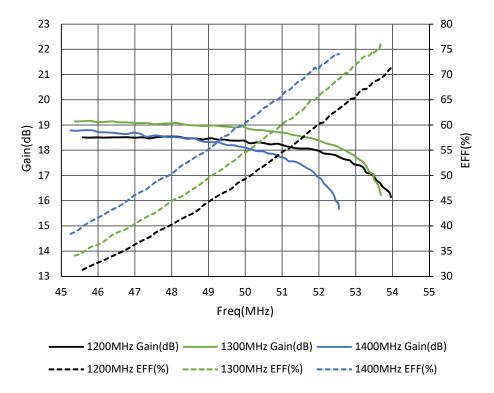
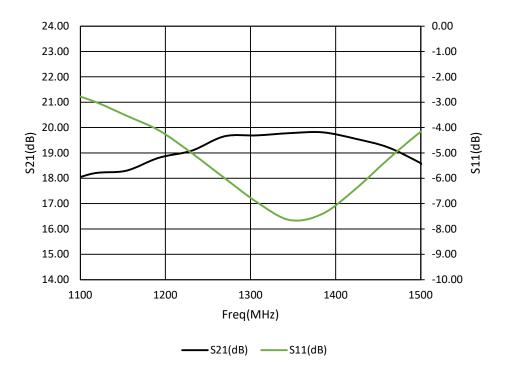



Figure 3. Network Analyzer result S11 and S21 (1200MHz~1400MHz) Vgs = -3.0V, VDS= 50V, IDQ = 500mA

Package Outline

Flanged ceramic package; 2 leads

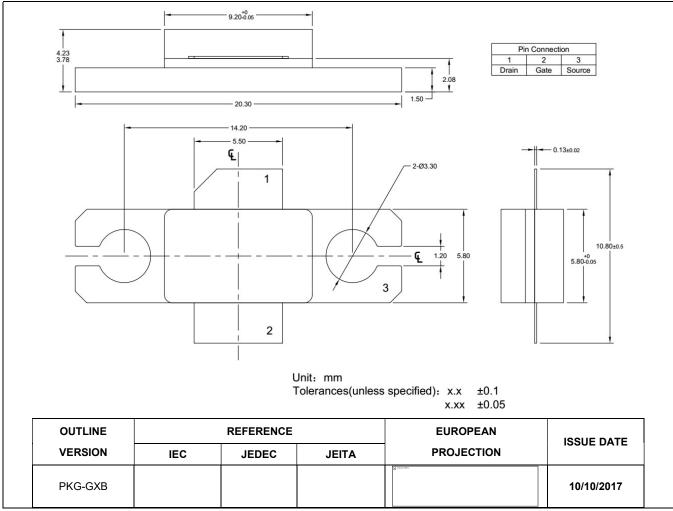


Figure 1. Package Outline PKG-G2E

Document Number: NU3020V Preliminary Datasheet V1.2

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2019/9/5	V1.0	Preliminary Datasheet
2020/1/2	V1.1	Modification on breakdown voltage rating
2020/4/15	V1.2	Modification of upper frequency limits

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.