
600W, 50V High Power RF LDMOS FETs

Description

The MX1060VP is a 600-watt capable, high performance, unmatched LDMOS FET, designed for wide-band commercial and industrial applications with frequencies HF to 1.0 GHz.

Typical performance(on Innogration test board with device soldered)
Signal: CW, Vds=36V, Idq=200mA

Freq (MHz)	Pout (W)	Gain (dB)	Effi (%)
30	300	16	79%
100	300	19.5	66%
200	300	19.1	59%
300	300	16.8	51%
400	300	17.5	51%
512	300	16.8	56%

Typical performance(on Innogration test board with device soldered)
Signal: CW, Vds=28V, Idq=200mA

Freq(MHz)	Psat(W)	Gp(dB)	Eff(%)
30	200	13.2	81%
60	211	16.55	77%
100	213	17.0	69%
150	218	16.4	63%
200	213	17.0	61%
250	200	15.1	57%
300	200	15.4	51%
350	213	15.6	50%
400	223	15.7	53%
450	218	15.8	56%
512	204	14.6	55%

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

Suitable Applications

MX1060VP LDMOS TRANSISTOR

Document Number: MX1060VP Preliminary Datasheet V1.0

- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)
- 160-230MHz (TV VHF III)
- 136-174MHz (Commercial ground communication)
- Laser Exciter
- Synchrotron
- MRI
- Plasma generator
- · Weather Radar

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	$V_{\scriptscriptstyle DSS}$	+125	Vdc
GateSource Voltage	$V_{\sf GS}$	-10 to +10	Vdc
Operating Voltage	V _{DD}	28~50	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _c	+150	°C
Operating Junction Temperature	T,	+225	°C

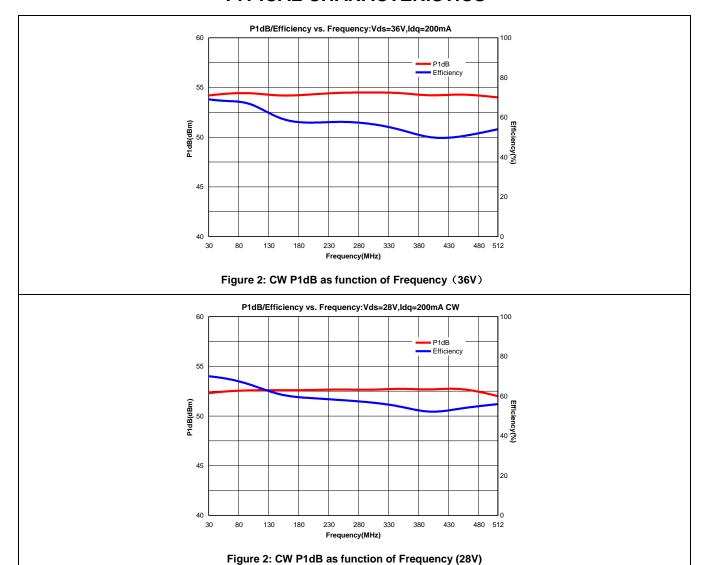
Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Dolo	0.2	OCAM.
T _C = 85°C, T _J =200°C, DC test	Rejc	0.2	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2

Table 4. Electrical Characteristics ($T_A = 25$ °C unless otherwise noted)


Characteristic	Symbol	Min	Тур	Max	Unit
DC Characteristics (per half section)					
Drain-Source Voltage	V		125		V
V_{GS} =0, I_{DS} =1.0Ma	V _{(BR)DSS}	123		V	
Zero Gate Voltage Drain Leakage Current				1	^
$(V_{DS} = 75V, V_{GS} = 0 V)$	I _{DSS}			1	μΑ
Zero Gate Voltage Drain Leakage Current				1	^
$(V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V})$	I _{DSS}			I	μΑ
GateSource Leakage Current	_			1	^
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}			'	μА
Gate Threshold Voltage	V (45)		2.65		V
$(V_{DS} = 50V, I_D = 600 \mu A)$	V _{GS} (th)		2.65		V
Gate Quiescent Voltage	V		3.25		V
(V _{DD} = 50 V, I _D = 200 mA, Measured in Functional Test)	$V_{GS(Q)}$		3.20		V

Load Mismatch (In Innogration Test Fixture, 50 ohm system):

Load Open, All phase angles, at 500W	Condition: V_{DD} = 50 V, I_{DQ} = 200 mA, f = 500MHz, pulse	No Dovino Dogradation	
Pulsed CW Output Power	width:100us, duty cycle:10%	No Device Degradation	
Load Open, All phase angles, at 300W CW	Condition: V _{DD} = 36 V, I _{DQ} = 200 mA, f = 30~500MHz	No Device Degradation	
Output Power,	Condition: V _{DD} = 30 V, I _{DQ} = 200 IIIA, I = 30~300IVIII2	No Device Degradation	

Document Number: MX1060VP Preliminary Datasheet V1.0

TYPICAL CHARACTERISTICS

Package Outline

MX1060VP LDMOS TRANSISTOR

Document Number: MX1060VP Preliminary Datasheet V1.0

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2018/08/10	Rev 1.0	Preliminary Datasheet Creation

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.