Gallium Nitride 50V, 25W, DC-6GHz RF Power Transistor

Description

The STAV58025P2 is a 25 watt, unmatched GaN HEMT, ideal for general applications up to 6GHz

It features high gain, wide band and low cost, in 4*4.5mm DFN plastic package.

It can support CW, pulse or any modulated signal.

There is no guarantee of performance when this part is used outside of stated frequencies.

• Typical Class AB Single--Carrier W--CDMA Characterization Performance:

VDD = 50 Vdc, IDQ = 50 mA, Pout = 34dBm Avg., Input Signal PAR = 10 dB

@ 0.01% Probability on CCDF. (On innogration application board with device soldered)

Freq(MHz)	Pout(dBm)	CCDF(dB	Ppeak(dBm)	Ppeak(W)	ACPR(dBc)	Gain(dB)	Efficiency(%
3400 3500 3600	33.97 33.98 33.99	9.16 9.16 9.10	43.12 43.14 43.08	20.53 20.62 20.34	-45.07 -45.15 -44.92	16.55 16.96 17.21	22.54 22.77 22.84
Freq(MHz)	Pout(dBm)	CCDF(dB	Ppeak(dBm)	Ppeak(W)	ACPR(dBc)	Gain(dB)	Efficiency(%)
3700 3800	33.98 33.99	9.09 8.93	43.07 42.93	20.29	-44.79 -43.74	17.16	23.30 22.98

Applications

- 5G, 4G wireless infrastructure
- Wideband or narrowband power amplifier
- Test instruments
- Civil pulse radar
- Jammer

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

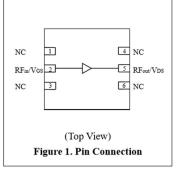

- 1. Set VGS to the pinch--off (VP) voltage, typically –5 V $\,$
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Figure 1: Pin Connection definition

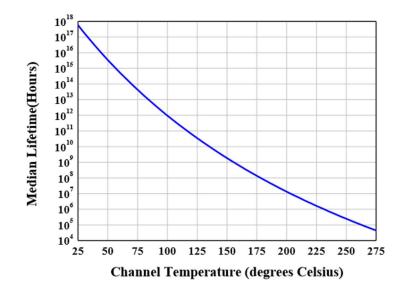
Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V _{GS}	-8 to +0.5	Vdc
Maximum forward gate current	lgs	3	mA
Operating Voltage	V _{DD}	55	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _c	+150	°C
Operating Junction Temperature	TJ	+225	°C
Fable 2. Thermal Characteristics			1
Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA T _c = 85°C, Pdiss=6.5W at Pavg=30dBm WCDMA 1 carrier	Rejc	7	°C /W

Table 3. Electrical Characteristics (TA = 25° C unless otherwise noted)


DC Characteristics (measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=3mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 3mA	V _{GS(th)}	-4		-2	V
Gate Quiescent Voltage VDS =50V, IDS=50mA, Measured in Functional Test		V _{GS(Q)}		-2.97		V

Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	3.6GHz, Pout=30dBm WCDMA					
	1 Carrier, All phase,	VSWR		10:1		
	No device damages					

Figure 2: Median Lifetime vs. Channel Temperature

Document Number: STAV58025P2 Preliminary Datasheet V1.0

Figure 3: Efficiency and power gain as function of Pout

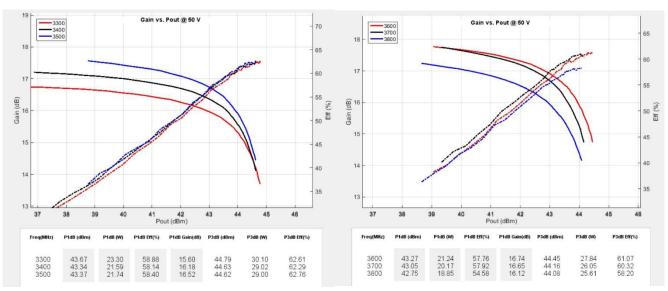
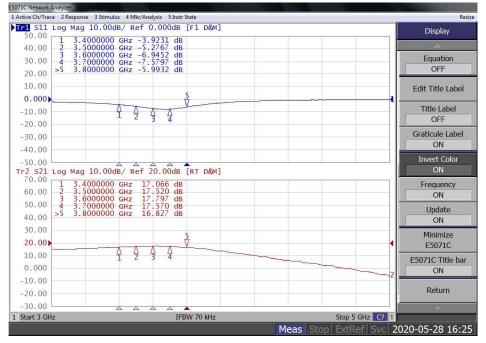
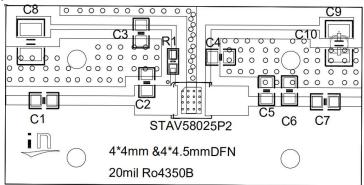




Figure 4: Network analyzer output, S11 and S21

Figure 5: Picture of application board

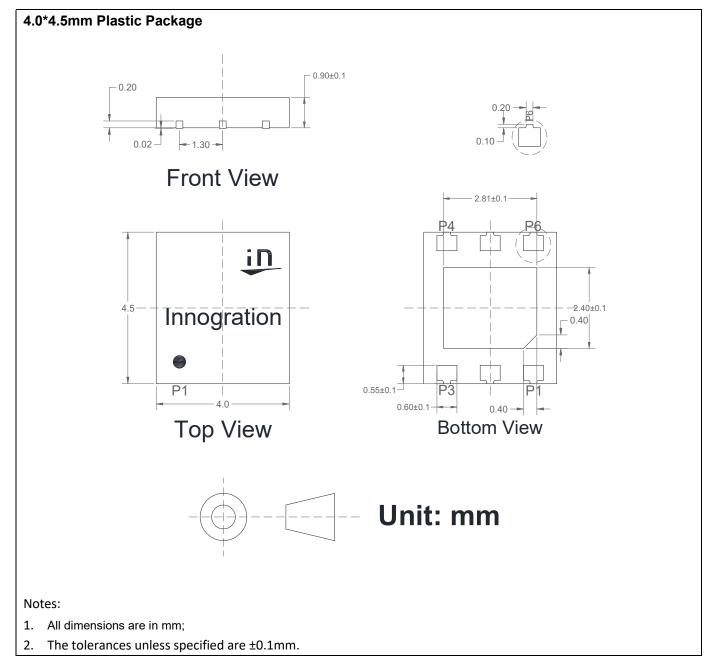


Table 4. Bill of materials of application board (PCB layout upon request, RO4350B 20mils)

C1,C3,C4,C7	5.6pF	ATC600F	
C2	1pF	ATC600F	
C5	0.5pF	ATC600F	
C6	0.2pF	ATC600F	
C8,C9	10uF/63V		
C10	470uF/63V		
R1	10 ohm		

Package Dimensions

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status	
2020/3/26	V1.0	Objective Datasheet Creation	
2020/6/1	V1.0	Preliminary Datasheet Creation	

Application data based on ZBB-20-10

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.