Innogration (Suzhou) Co., Ltd.

700-1700MHz, 45W, 28V High Power RF LDMOS FETs

Description

The ITCH16045A2 is a 45-watt, input-matched LDMOS FETs, designed for Beidou Global Positioning System and communication/ISM applications with frequencies from700 to 1700 MHz. It can be used in Class AB/B and Class C for all typical modulation formats.

•Typical Performance (On Innogration fixture with device soldered):

 V_{DD} = 28 Volts, I_{DQ} = 50 mA, CW.

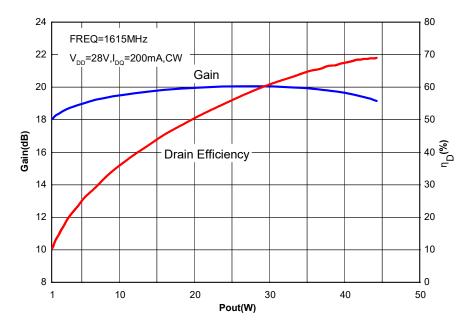
Frequency	Gp (dB)	P _{-1dB} (W)	η _D @Ρ ₋₁ (%)
1615 MHz	20	43	64.5

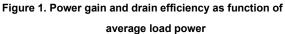
Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Internally Matched for Ease of Use
- Excellent thermal stability, low HCI drift

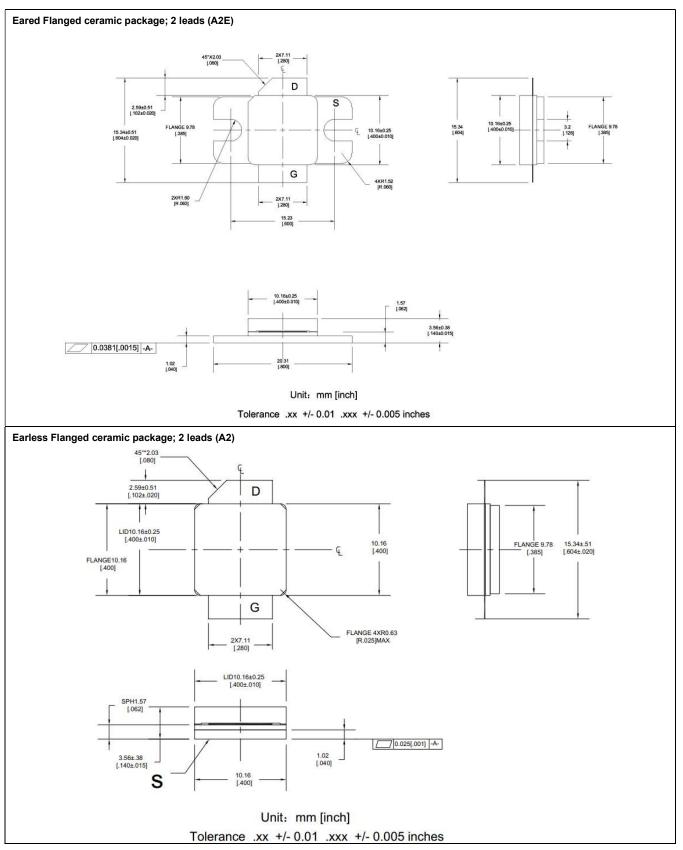
- ITCH16045A2
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

Table 1. Maximum Ratings


Rating		/mbol		Value		Unit	
DrainSource Voltage		V _{DSS}		65		Vdc	
GateSource Voltage		/ _{GS}	-1(-10 to +10		Vdc	
Operating Voltage		/ _{DD}		+32		Vdc	
Storage Temperature Range	Storage Temperature Range		-65 to +150			°C	
Case Operating Temperature		Tc	r _c +150			°C	
Operating Junction Temperature		TJ	+225			°C	
Table 2. Thermal Characteristics							
Characteristic	cteristic Syn		Value			Unit	
Thermal Resistance, Junction to Case	П	θJC	0.7		0000	°C/M	
T _c = 85°C, T _J =200°C, DC test	R	UC U		0.7		°C/W	
Table 3. ESD Protection Characteristics							
Test Methodology		Class					
Human Body Model (per JESD22A114)		Class 2					
Table 4. Electrical Characteristics (TA = 25 $^{\circ}$ C unle	ess otherwise	noted)					
Characteristic		Symbol	Min	Тур	Max	Unit	
DC Characteristics							
Zero Gate Voltage Drain Leakage Current					100		
$(V_{DS} = 65V, V_{GS} = 0 V)$		I _{DSS}			100	μΑ	
Zero Gate Voltage Drain Leakage Current					1		
(V _{DS} = 28 V, V _{GS} = 0 V)		I _{DSS}				μΑ	
GateSource Leakage Current		1			1	μA	
(V _{GS} = 10 V, V _{DS} = 0 V)		IGSS				μΑ	


Innogration (Suzhou) Co., Ltd.

Document Number: ITCH16045A Preliminary Datasheet V2.0


Gate Threshold Voltage	Maria		4.75		
$(V_{DS} = 28V, I_D = 300 \ \mu A)$	V _{GS} (th)	1.75			V
Gate Quiescent Voltage	10		1.9		v
$(V_{\text{DD}}$ = 28 V, I_{D} = 50 mA, Measured in Functional Test)	V GS(Q)	V _{GS(Q)}	1.9		v
Functional Tests (In Innogration Test Fixture, 50 ohm system) V _{DD} = 28 Vdc, I _{DQ} = 50 mA, f =1615 MHz, CW Signal Measurements.					
Power Gain	Gp		20		dB
1 dB Compression Point	P-1dB		43		W
Drain Efficiency@P1dB	η _D		64.5		%
Input Return Loss	IRL		-10		dB
Load Mismatch (In Innogration Test Fixture, 50 ohm system): V_{DD} = 28 Vdc, I_{DQ} = 50 mA, f = 1615 MHz					
VSWR 10:1 at 50W pulse CW Output Power	No Device Degradation				

TYPICAL CHARACTERISTICS

Package Outline

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status	
2016/12/26	Rev 1.0	Preliminary Datasheet	
2017/03/17	Rev 2.0	Preliminary Datasheet	
2020/6/21	Rev 2.1	Modify the lower frequency limits	

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.