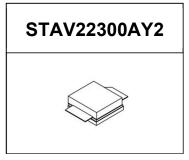
Document Number: STAV22300AY2 Preliminary Datasheet V1.0

Gallium Nitride 50V, 300W, 1.8-2.2GHz RF Power Transistor


Description

The STAV22300AY2 is an input matched, single ended 300watt, GaN HEMT, ideal for 5G applications from 1.8 to 2.2GHz.

There is no guarantee of performance when this part is used outside of stated frequencies.

WCMDA 3GPP TM1 64 DPCH 9.9 dB PAR @ 0.01% CCDF. VDS = 50 V, IDQ = 300 mA,
(On innogration Class AB application board with device soldered)

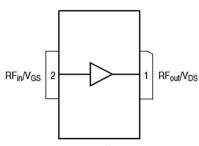
	47dBm		47.5dBm			
Freq (MHz)	ACPR(dBc)	G(dB)	Eff(%)	ACPR(dBc)	G(dB)	Eff(%)
2110	-37.76	17.72	32.63	-36.64	17.67	34.38
2140	-37.08	17.88	34.20	-35.79	17.82	36.02
2170	-35.95	17.87	35.80	-34.73	17.81	37.55

Applications

- Sub-2GHz pulse or CW amplifier
- 5G base station amplifier
- · Doherty power amplifier

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON


- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Figure 1: Pin Connection definition

Transparent top view (Backside grounding for source)

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V _{GS}	-8 to +0.5	Vdc
Operating Voltage	V_{DD}	55	Vdc
Maximum gate current	Igs	36	mA

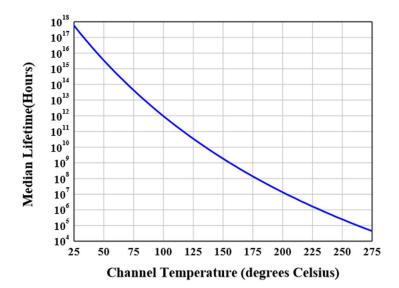
Document Number: STAV22300AY2 Preliminary Datasheet V1.0

Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _C	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA	Do 10	TDD	00 ///
T _C = 85°C, at Pd=80W	Rejc	TBD	°C /W

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)


DC Characteristics (Each path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=36mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 36mA	$V_{GS(th)}$	-4		-2	V
Gate Quiescent Voltage	VDS =50V, IDS=300mA, Measured in Functional Test	$V_{GS(Q)}$		-3.14		V

Ruggedness Characteristics

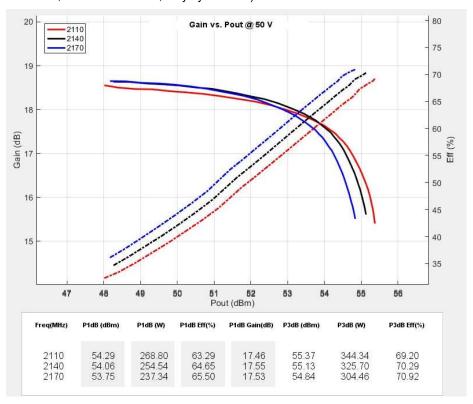
Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	2.14GHz, Pout=300W pulse CW					
	for each path	VSWR 10:1				
	All phase,					
	No device damages					

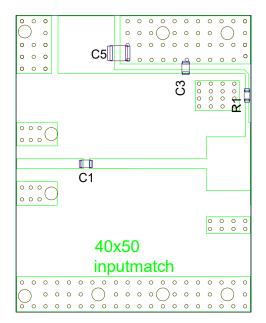
Figure 2: Median Lifetime vs. Channel Temperature

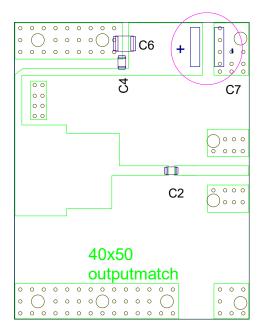
Document Number: STAV22300AY2 Preliminary Datasheet V1.0

Figure 3: Efficiency and power gain as function of Pout

(VDD = 50Vdc, IDQ = 300 mA, Pulse width=20us, duty cycle=10%)

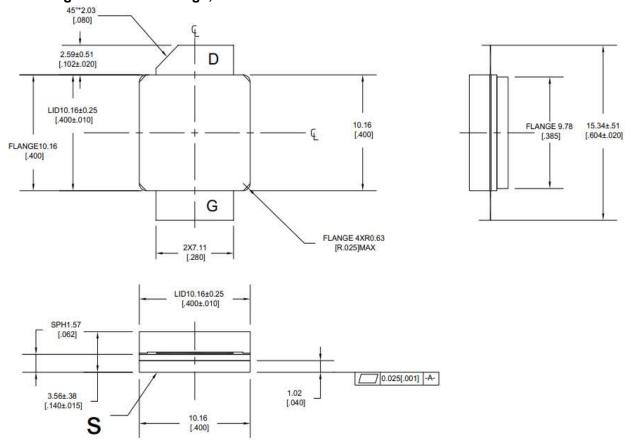





Figure 4: S11 / S21 output from network analyzer

Document Number: STAV22300AY2 Preliminary Datasheet V1.0

Figure 5: Picture of application board of 2.1-2.2GHz Class AB



Designator	Comment	Footprint	Quantity	
C1, C2, C3, C4	10pF	0805	4	
C5 ,C6	10uF	1210	2	
C7	100uF/63V		2	
R1	10ohm	0603	1	

Document Number: STAV22300AY2 Preliminary Datasheet V1.0

Earless Flanged Ceramic Package; 2 leads

Unit: mm [inch]

Tolerance .xx +/- 0.01 .xxx +/- 0.005 inches

Document Number: STAV22300AY2 Preliminary Datasheet V1.0

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2020/6/23	V1.0	Preliminary Datasheet Creation

Application data based on: LWH-20-06

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.