Gallium Nitride 28V 12W, RF Power Transistor

Description

The GTAH35012PD is a 12W GaN HEMT, designed for multiple applications, up to 6000MHz. The transistor is available in a cost effective 4mm*4mm, surface mount, DFN package with 100% DC production test to ensure the quality and consistency.

It can be used in CW, Pulse and multiple modulation mode.

There is no guarantee of performance when this part is used in applications designed Outside of these frequencies.

•Typical Performance of class AB circuit (On different Innogration fixtures):

V_{DD} =28 V, I_{DQ} =20 mA, Pulse CW, Pulse Width=20 us, Duty cycle=10%.

Freq	Pulse CW Signal				
(MHz)	P _{1dB}	Gain@ P _{1dB}	P _{3dB}	$\eta_D @P_3$	
(11112)	(dBm)	(dB)	(dBm)	(%)	
915	41.0	20.3	42.1	74	
1800-2200	41	17.7	42	70	
2300-2700	42	17	42.5	69	
3400-3800	41	15	41.7	60	
5300-5900	41.3	10	42.4	57	

GTAH35012PD

DFN 4*4mm

•Typical Performance of class AB circuit (On different Innogration fixtures):

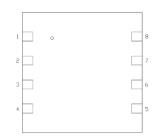
V_{DD} =28 V, I_{DQ} =20 mA, WCDMA 1 carrier CCDF=10dB

Freq)dBm		
(MHz)	CCDF	ACPR	Gain	η_D
(10112)	(dB)	(dB)	(dB)	(%)
1800-2200	10	-33	18	22
2300-2700	10	-38	17	20
3400-3800	9.6	-37	15	20
5300-5900	9.7	-37	10.5	15

Applications and Features

- Suitable for wireless communication infrastructure, wideband amplifier, EMC testing, ISM etc.
- High Efficiency and Linear Gain Operations
- Thermally Enhanced Industry Standard Package
- High Reliability Metallization Process
- Excellent thermal Stability and Excellent Ruggedness
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Important Note: Proper Biasing Sequence for GaN HEMT Transistors


Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage (28V)
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Pin Configuration and Description(Top view)

Pin No.	Symbol	Description
2, 3	RF IN /VGS	RF Input, Gate Bias
6, 7	RF OUT /VDS	RF Output, Drain Bias
1, 4, 5, 8	NC	No connection
Package Base	GND	DC/RF Ground. Must be soldered to EVB ground plane over array of vias for thermal and RF performance. Solder voids under Pkg Base will result in excessive junction temperatures causing permanent damage.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	125	Vdc
GateSource Voltage	V _{gs}	-10,+2	Vdc
Operating Voltage	V _{dd}	40	Vdc
Maximum Forward Gate Current @ Tc = 25°C	Igmax	3	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature(See note 1)	TJ	+200	°C
Total Device Power Dissipation (Derated above 25°C, see note 2)	Pdiss	21	W

Note: 1. Continuous operation at maximum junction temperature will affect MTTF

2.Bias Conditions should also satisfy the following expression: Pdiss < (Tj – Tc) / RJC and Tc = Tcase

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	D e 10		°C/W
T_{C} = 85°C, T_{J} =200°C, RF CW operation	Rejc	5.5	C/W

Table 3. Electrical Characteristics ($T_C = 25^{\circ}C$ unless otherwise noted)

DC Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	V _{GS} =-8V; I _{DS} =3mA	V _{DSS}		125		V
Gate Threshold Voltage	V _{DS} = 28V, I _D =3 mA	V _{GS} (th)		-2.7		V
Gate Quiescent Voltage	V _{DS} =28V, I _{DS} =20mA, Measured in Functional Test	V _{GS(Q)}		-2.46		v

Functional Tests (In Test Fixture, 50 ohm system) :V_{DD} = 28 Vdc, I_{DQ} = 20 mA, f = 915MHz, Pulsed CW, 20uS/10%

Characteristic	Symbol	Min	Тур	Max	Unit
Power Gain@P1dB	Gp		20.4		dB
Drain Efficiency @ P _{SAT}	Eff		74.5		%
Saturated Power	P _{SAT}		41.9		dBm

Document Number: GTAH35012PD Preliminary Datasheet V1.2

Input Return Loss	IRL	-8	dB
Mismatch stress at all phases (Device no damage)	VSWR	10:1	Φ

TYPICAL CHARACTERISTICS

5.3-5.9GHz

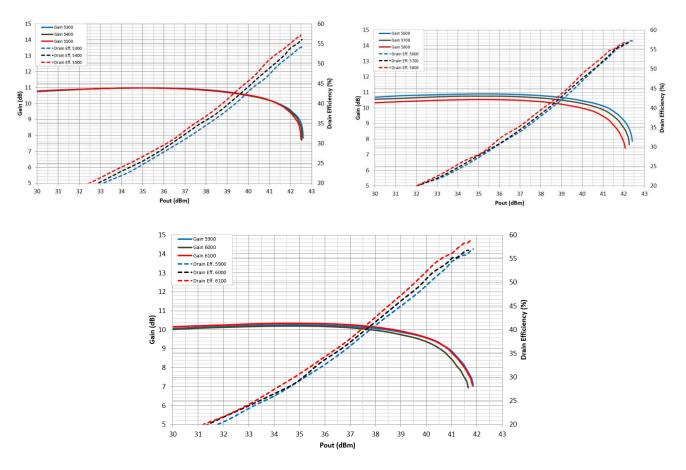


Figure 2. Power Gain and Drain Efficiency as Function of Pulse Output Power

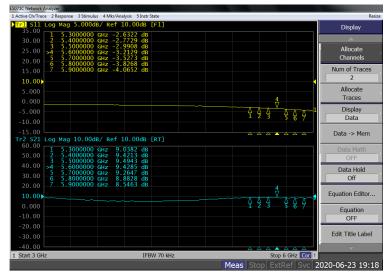
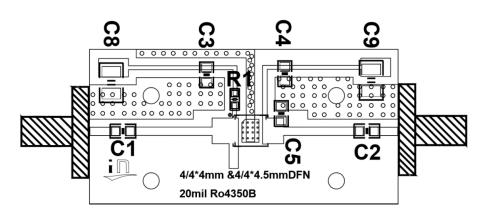
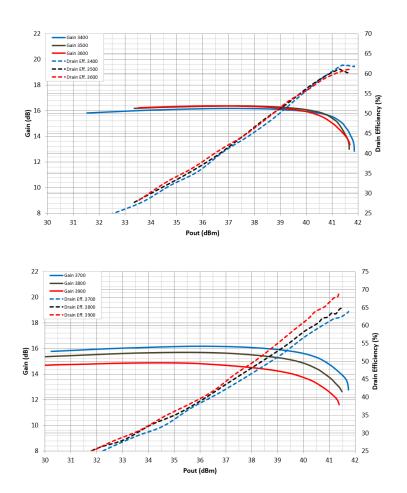
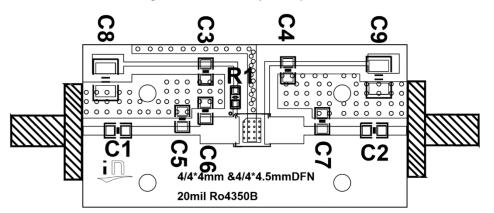




Figure 3. Network analyzer output S11/S21

вом		
C1,C2,C3 C4	3.3pF	ATC600F
C5	0.4pF	ATC600F
C8,C9	10uF/63V	
R1	10 ohm	

Figure 5. PCB layout and bill of materials


Figure 6. Power Gain and Drain Efficiency as Function of Pulse Output Power

3.4-3.8GHz

Document Number: GTAH35012PD Preliminary Datasheet V1.2

Figure 7. Network analyzer output S11/S21

вом		
C1,C2,C3 C4	6.8pF	ATC600F
C5	0.2pF	ATC600F
C6, C7	1pF	ATC600F
C8,C9	10uF/63V	
R1	10 ohm	

Figure 8. PCB layout and bill of materials

2.3-2.7GHz

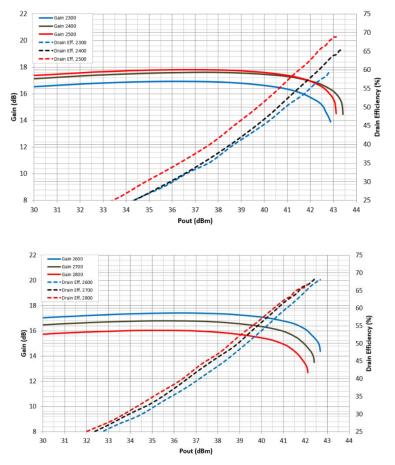


Figure 10. Power Gain and Drain Efficiency as Function of Pulse Output Power

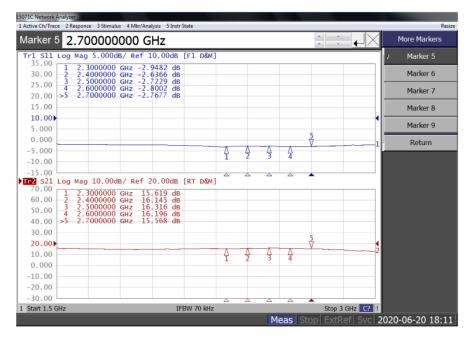
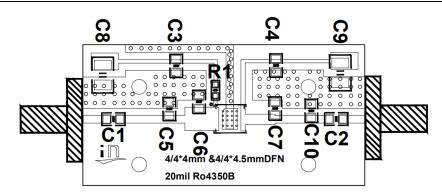



Figure 9. Network analyzer output S11/S21

вом		
C1,C2,C3 C4	8.2pF	ATC600F
C5	1.5pF	ATC600F
C6, C7	1.0pF	ATC600F
C8,C9	10uF/63V	
C10	0.5pF	
R1	10 ohm	

Figure 10. PCB layout and bill of materials

1.2-2.2GHz

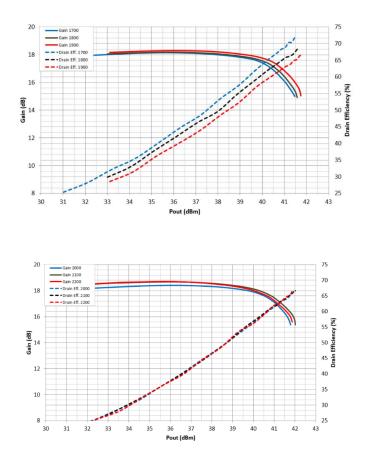
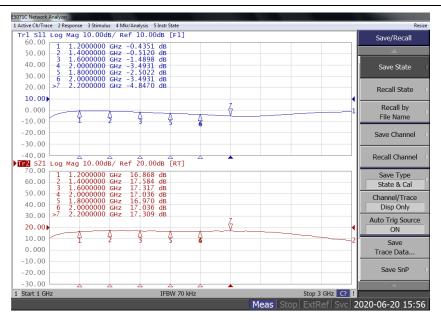
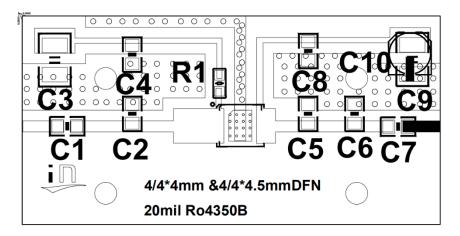
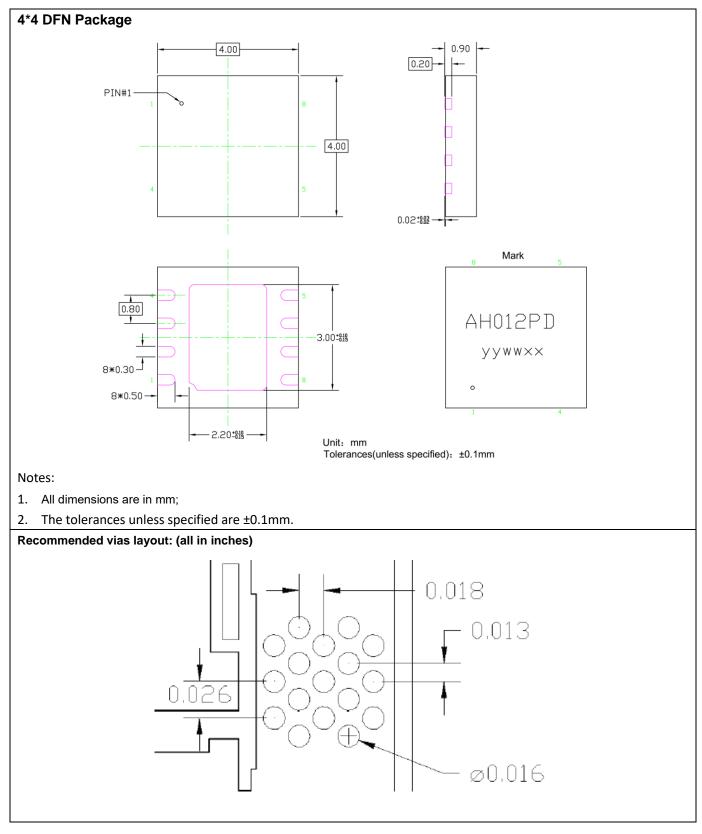


Figure 11. Power Gain and Drain Efficiency as Function of Pulse Output Power


Figure 12. Network analyzer output S11/S21

	ВОМ				
C1,C4,C7,C8	12pF	ATC600F			
C2	2pF	ATC600F			
C5	0.4pF	ATC600F			
C6	0.2pF	ATC600F			
R1	10 ohm				
C10	470uF/63V				
C3,C9	10uF/63V				

Figure 1. PCB layout and bill of materials

Package Dimensions

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2019/11/27	V1.0	Objective Datasheet Creation
2019/11/29	V1.1	Pin definition modification
2020/6/28	V1.2	Add new application for multi bands

Application data based on ZYH-20-01, ZBB-20-14/15/16

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.