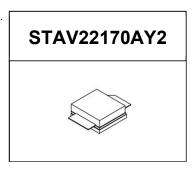
Gallium Nitride 50V, 170W, 1.8-2.4GHz RF Power Transistor

Description

The STAV22170AY2 is a single ended 170watt, GaN HEMT, ideal for applications from 1.8 to 2.2GHz.


It is an input matched transistor capable of supporting CW, pulse or any modulated signal. There is no guarantee of performance when this part is used outside of stated frequencies.

• Typical pulse CW performance across 1.8-2.4GHz Class AB

VDD = 50 Vdc, IDQ = 200mA, Pulse width=20us, duty cycle=10%, Tc=25°C

(On innogration application board with device soldered)

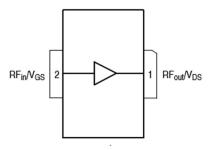
Freq (MHz)	Gain (@P1dB)	P3dB (dBm)	P3dB (W)	Eff (%)
1800	16.06	52.92	195.67	57.80
1900	17.10	52.92	195.79	56.95
2000	17.57	52.93	196.30	56.38
2100	17.54	53.00	199.54	56.84
2200	17.66	53.11	204.64	58.76
2300	17.70	53.07	202.99	61.33
2400	17.91	53.23	210.21	67.53

Applications

- Sub-2GHz pulse or CW amplifier
- 4G LTE power amplifier
- Wideband jammer

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON


- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Figure 1: Pin Connection definition

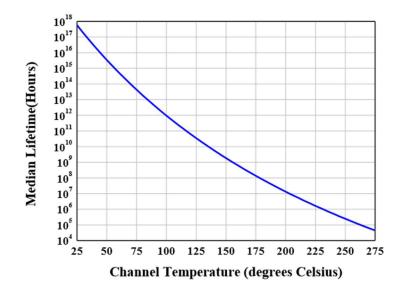
Transparent top view (Backside grounding for source)

Table 1. Maximum Ratings

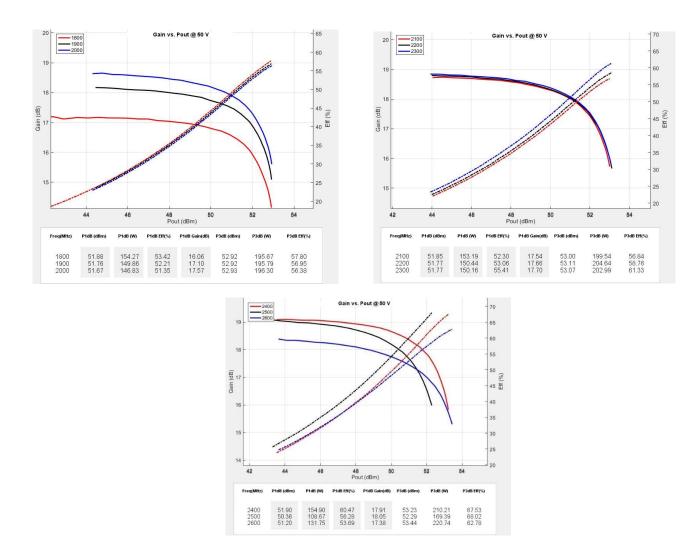
Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V _{GS}	-8 to +0.5	Vdc
Operating Voltage	V _{DD}	55	Vdc
Maximum gate current	lgs	21.6	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C
Fable 2. Thermal Characteristics			
Characteristic	Symbol	Value	Unit

Thermal Resistance, Junction to Case by FEA Rejc 1.6 °C /W Tc= 85°C, at Pd=65W °C /W °C /W °C /W

Table 3. Electrical Characteristics (TA = 25° C unless otherwise noted)


DC Characteristics (measured on wafer prior to packaging)

Characteristic	Conditions	Symbol Min Typ Max		Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=21.6mA	mA V _{DSS} 200		V	
Gate Threshold Voltage	VDS =10V, ID = 21.6mA	V _{GS(th)} -4 -2		V	
Gate Quiescent Voltage	VDS =50V, IDS=200mA, Measured in Functional Test	V _{GS(Q)}	-3.12		V


Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	2.1GHz, Pout=170W pulse CW					
	All phase, VSWR 10:1					
	No device damages					

Figure 2: Median Lifetime vs. Channel Temperature

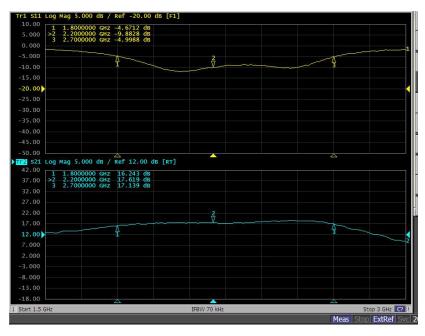
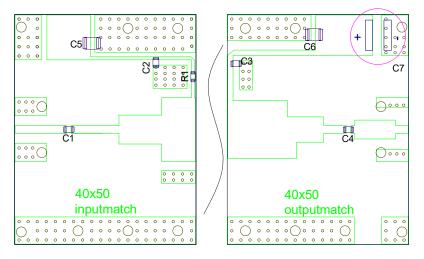
Figure 3: Efficiency and power gain as function of Pout

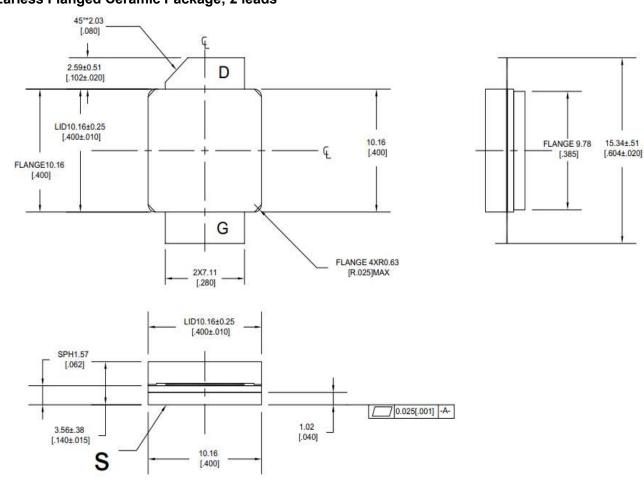
Figure 4: WCDMA back off performance across the band

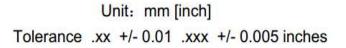
(VDD = 50 Vdc, IDQ = 450 mA, 1.8-2.4GHz application board) Pout=42dBm(Left), Pout=45dBm(Right)

Freq(MHz)	ACPR(dBc)	Gain(dB)	Efficiency(%)	'Freq(MHz)	ACPR(dBc)	Gain(dB)	Efficiency(%)
1800 1900 2000 2100 2200 2300	-43.77 -43.93 -43.86 -44.75 -45.46 -46.46	16.25 17.15 17.54 17.77 17.79 17.85	19.09 18.94 18.59 18.67 18.94 19.55	1800 1900 2000 2100 2200 2300	-39.72 -38.95 -38.88 -39.07 -39.28 -39.43	15.77 16.62 16.98 17.21 17.25 17.33	27.10 26.52 26.13 26.19 26.65 27.61
2400	-48.32	18.24	20.92	2400	-39.86	17.86	29.88

Figure 5: S11 / S21 output from network analyzer on 1.8-2.4GHz application board


Figure 6: Picture of application board of 1.8-2.7GHz


Table 4. Bill of materials of application board (PCB layout upon request)

Designator	Value	Package	Quantity	
C1, C2, C3, C4	10pF	0805	4	
C5, C6	10uF	1210	2	
R1	10 Ω	0603	1	
C7	100uF/63V		1	
РСВ	30mils	RO4350B		

Document Number: STAV22170AY2 Preliminary Datasheet V1.0

Earless Flanged Ceramic Package; 2 leads

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2020/7/2	V1.0	Preliminary Datasheet Creation, Rename STAV22180A2 to STAV22170AY2

Application data based on: LSM-19-21

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.