SU6012V GaN TRANSISTOR

Document Number: SU6012V Preliminary Datasheet V2.0

Gallium Nitride 50V 120W, RF Power Transistor

Description

The SU6012V is a 120W single ended, input matched GaN HEMT, designed for multiple applications with frequencies up to 4GHz.

There is no guarantee of performance when this part is used in applications designed Outside of these frequencies.

•Typical performance (on Innogration 1.8-4.0GHz class AB fixture with device soldered)

SU6012V Vgs=-2.95V Vds=50V Idq=100mA CW						
Freq	Psat	Psat	IDS	Pin	Gain	E.CC(0/)
(MHz)	(dBm)	(W)	(A)	(dBm)	(dB)	Eff(%)
1800	50.21	105.0	4.51	38.98	11.23	46.54
2000	49.54	89.9	3.45	37.87	11.67	52.14
2100	49.23	83.8	3.26	38.08	11.15	51.38
2200	49.93	98.4	3.56	39.57	10.36	55.28
2300	49.41	87.3	3.22	38.94	10.47	54.22
2400	49.88	97.3	3.96	39.63	10.25	49.13
2500	49.67	92.7	4.32	39.51	10.16	42.91
2600	50.70	117.5	5.30	41.65	9.05	44.34
2700	50.80	120.2	5.05	40.80	10.00	47.61
2800	50.52	112.7	4.94	40.56	9.96	45.64
2900	50.35	108.4	4.87	41.10	9.25	44.51
3000	50.08	101.9	4.70	40.43	9.65	43.34
3100	50.24	105.7	4.63	40.74	9.50	45.65
3200	50.21	105.0	4.52	40.96	9.25	46.44
3300	50.34	108.1	4.61	40.87	9.47	46.92
3400	50.10	102.3	4.38	40.91	9.19	46.73
3500	50.31	107.4	4.58	41.06	9.25	46.90
3600	50.35	108.4	4.62	40.82	9.53	46.92
3700	49.94	98.6	4.54	39.86	10.08	43.45
3800	50.14	103.3	4.64	40.01	10.13	44.52
3900	49.83	96.2	4.35	38.73	11.10	44.21
4000	49.36	86.3	3.76	37.86	11.50	45.90

Applications and Features

- Suitable for wireless communication infrastructure, wideband amplifier, EMC testing, ISM etc.
- High Efficiency and Linear Gain Operations
- Thermally Enhanced Industry Standard Package
- High Reliability Metallization Process
- · Excellent thermal Stability and Excellent Ruggedness
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage (50V)

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V

SU6012V GaN TRANSISTOR

Document Number: SU6012V Preliminary Datasheet V2.0

- 3. Increase VGS until IDS current is attained
- 3. Reduce VDS down to 0 V

4. Apply RF input power to desired level

4. Turn off VGS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V _{GS}	-8 to 0	Vdc
Operating Voltage	V _{DD}	0 to 55	Vdc
Maximum forward gate current	Igf	16	mA
Storage Temperature Range	Tstg	-65 to +150	С
Case Operating Temperature	T _C	-55 to +150	С
Operating Junction Temperature	Tj	+225	С

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Po IO	2	C/W
T _C = 85°C, T _J =200°C, DC Power Dissipation, FEA	Rejc	2	C/ VV

Table 3. Electrical Characteristics ($T_C = 25^{\circ}C$ unless otherwise noted)

DC Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	V _{GS} =-8V; I _{DS} =16mA	V_{DSS}		200		V
Gate Threshold Voltage	V _{DS} = 50V, I _D = 16mA	V _{GS} (th)	-4		-2	V
Gate Quiescent Voltage	V _{DS} =50V, I _{DS} =100mA, Measured in Functional Test	V _{GS(Q)}		-3.04		V

Reference Circuit of Test Fixture Assembly Diagram

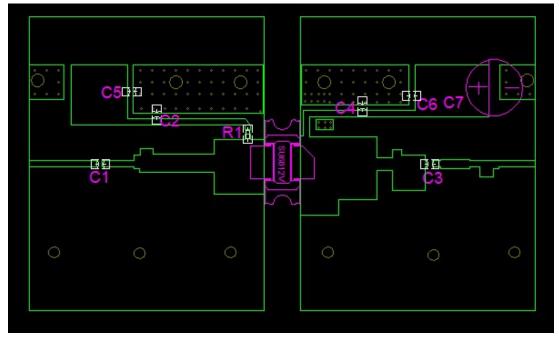
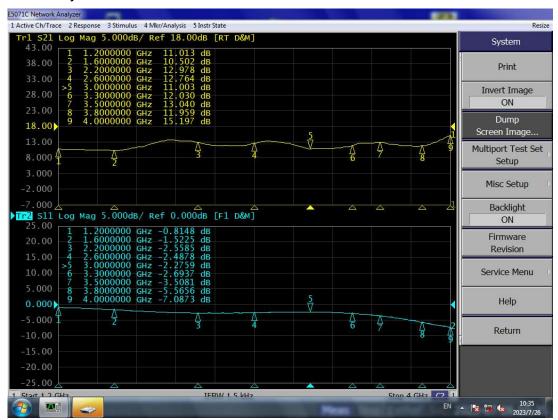



Figure 1. Test Circuit Component Layout (1800-4000MHz)

Table 4. Test Circuit Component Designations and Values

Component	Description	Suggestion	
C5,C6	10uF	10uF/100V	
C1	8.2pF	MQ101111	
C2	4.7pF	MQ101111	
C3	6.8pF	MQ101111	
C4	9.1pF	MQ101111	
C7	470uF/63V	Electrolytic Capacitor	
R1	100 Ω Chip Resistor		
РСВ	20Mil	Rogers4350	

Figure 2. Network Analyzer result S11 and S21

Package Outline

Flanged ceramic package; 2 leads

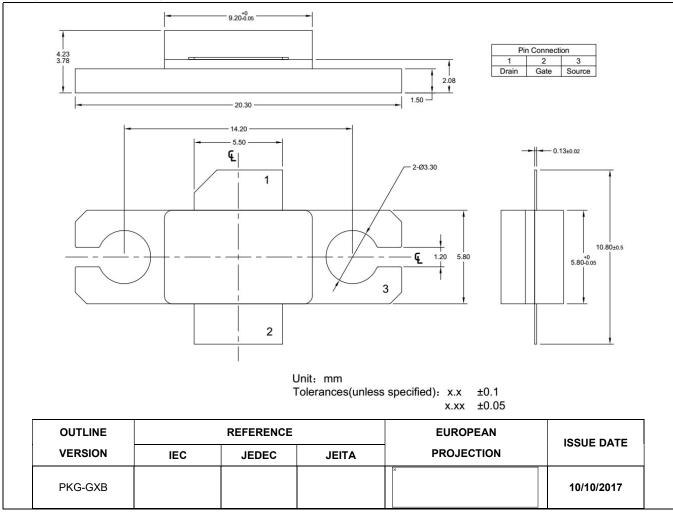


Figure 1. Package Outline PKG-G2E

SU6012V GaN TRANSISTOR

Document Number: SU6012V Preliminary Datasheet V2.0

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2020/5/13	V1.0	Preliminary Datasheet creation
2020/7/7	V1.1	Correct typo on 1st page
2023/7/26	V2.0	Use the latest application result, upper limits to 4GHz

Application data based on YHG-20-11/TC-23-47

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.