Document Number: STAV38041C6 Preliminary Datasheet V1.1

Gallium Nitride 50V, 40W, 0.1-4.2GHz RF Power Transistor

Description

The STAV38041C6 is a 40watt, GaN HEMT, ideal for general applications from 0.1 to 4.2GHz. It features high gain, wide band and low cost, in 10*6mm plastic open cavity package, enabling surface mounted on PCB through grounding vias or soldered on heatsink directly.

There is no guarantee of performance when this part is used outside of stated frequencies.

• Typical Class AB pulse CW performance across 3.4-3.8GHz:

Pulse width=50us, duty cycle=20% (On innogration wideband application board with device soldered)

STAV38041C6

Vds= 50V, Vgs=-3V, Idq=50mA					
	Pulse Peak Power				
Freq(MHz) P-1(dBm) P-1Gain (dB) P-3(dBm) P-3(W) EFF (%)					EFF (%)
3400	45.52	17.3	46.78	47.7	60.2
3500	45.58	17.9	46.68	46.6	63.8
3600	45.24	18.6	46.47	44.3	64.8
3700	44.96	18.4	46.37	43.3	64.0
3800	44.58	17.7	46.29	42.6	62.2

Other application data available upon request: 1.8-2.2GHz,2.3-2.7GHz

Applications

- 5G, 4G wireless infrastructure
- Wideband or narrowband power amplifier
- Test instruments

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically -5~V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V _{GS}	-8 to +0.5	Vdc
Operating Voltage	V _{DD}	55	Vdc
Maximum gate current	Igs	5	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _C	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA	Dava	F	°C /W
T _C = 85°C, at Pavg=2W WCDMA 1 carrier	Rejc	5	°C /VV

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)

Innogration (Suzhou) Co., Ltd.

Document Number: STAV38041C6 Preliminary Datasheet V1.1

DC Characteristics (measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=5mA	V _{DSS}		200		V
Gate Threshold Voltage VDS =10V, ID = 5mA		$V_{GS(th)}$	-4	-3	-2	V
Gate Quiescent Voltage VDS =50V, IDS=50mA, Measured in Functional Test		$V_{GS(Q)}$		-3		V

Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	3.8GHz, Pout=40W pulse CW					
	All phase,	VSWR		10:1		
	No device damages					

Figure 1: Pin definitions (Top view)

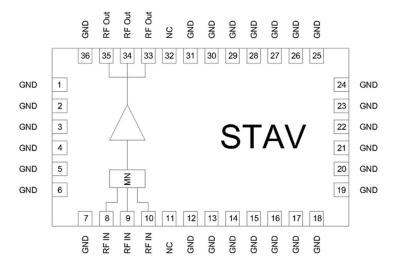
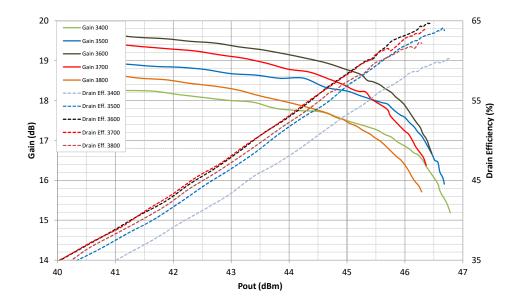



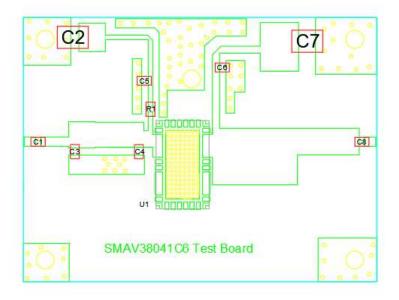
Figure 2: Efficiency and power gain as function of Pout (Measured on 3.4-3.8GHz application board)

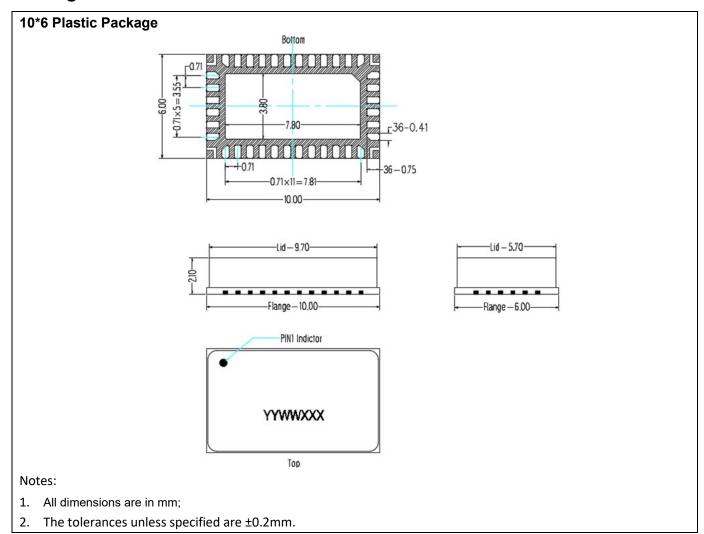
VDD = 50 Vdc, IDQ = 50mA, Pulse width=50us, duty cycle=20%

Document Number: STAV38041C6 Preliminary Datasheet V1.1

Figure 3: Network plot for S11/S21

Figure 4: Picture of application board of 3.4-3.8GHz




Table 4. Bill of materials of application board (PCB layout upon request)

Component	Value	Description
PCB	RO4350B 20mils	
C1、C5、C6、C8	8.2pF	ATC600S
C3	0.3pF	ATC600S
C4	0.5pF	ATC600S
C2、C7	10uF	TDK1206
R1	10 Ω	TDK0805

Innogration (Suzhou) Co., Ltd.

Document Number: STAV38041C6
Preliminary Datasheet V1.1

Package Dimensions

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2021/5/28	V1.0	Preliminary Datasheet Creation
2021/11/5	V1.1	1.8-2.2, 2.3-2.7GHz data ready

Application data based on: HJ-21-05/LBG-21-42

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.