Innogration (Suzhou) Co., Ltd.

Gallium Nitride 28V 15W, General purpose RF Power Transistor

Description

The GTAH10015P3 is a 15W Psat, 50Ω-input matched discrete GaN on SiC HEMT which operates from 30MHz to 1GHz. The integrated input matching network enables wideband gain and power performance, while the output can be matched on board to optimize power and efficiency for any region within the band. The device is housed in a 6 x 5 mm leadless SMT package that saves real estate of already space-constrained handheld radios. There is no guarantee of performance when this part is used in applications designed Outside of these frequencies.

Typical Performance of class AB circuit (On Innogration 30-678MHz fixture):

V_{DD} =28V, I_{DQ} =50 mA, CW, high efficiency tuning

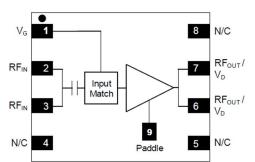
Freq(MHz)	Pin(dBm)	Psat(dBm)	Psat(W)	lds(A)	Gain(dB)	Eff(%)
30	27.5	40.1	10.2	0.42	12.6	86
100	26.7	40.1	10.2	0.44	13.2	83
200	26	40.3	10.7	0.48	14.3	79
300	25.8	40.4	11	0.51	14.2	76
400	26.2	40.5	11.2	0.54	14.3	74
500	27.5	40.5	11.2	0.57	13	70
600	27.2	40.5	11.2	0.62	13.3	65
678	27	40.7	11.7	0.67	13.7	62

Applications and Features

- Suitable for wireless communication infrastructure, wideband amplifier, EMC testing, ISM etc.
- · High Efficiency and Linear Gain Operations
- Thermally Enhanced Industry Standard Package

Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON


- 1. Set VGS to the pinch—off (VP) voltage, typically –5 V
- 2. Turn on VDS to nominal supply voltage (28V)
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

- High Reliability Metallization Process
- Excellent thermal Stability and Excellent Ruggedness
- · Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Pin Configuration and Description(Top view)

Pin No.	Symbol	Description		
1	VG	Gate Bias		
2, 3	RF IN	RF Input		
6, 7	RF OUT /VDS	RF Output, Drain Bias		
4, 5, 8	NC	No connection		
		DC/RF Ground. Must be soldered to EVB ground plane over array of		
9	GND	vias for thermal and RF performance. Solder voids under Pkg Base will		
		result in excessive junction temperatures causing permanent damage.		

Table 1. Maximum Ratings (Not simultaneous, TC = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	150	Vdc
GateSource Voltage	V _{GS}	-10,+2	Vdc
Operating Voltage	V _{DD}	40	Vdc
Maximum Forward Gate Current	lgmax	4	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature(See note 1)	TJ	+225	°C

1. Continuous operation at maximum junction temperature will affect MTTF

2. Bias Conditions should also satisfy the following expression: Pdiss < (Tj – Tc) / RJC and Tc = Tcase

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case			
T_{c} = 85°C, T_{J} =200°C, DC Power Dissipation, FEA (See note	R ₀ JC-DC	3.5	C/W
1)			

1. ReJC-DC is tested at only DC condition, it is related to the highest thermal resistor value among all test conditions. It might be differently lower in different RF operation conditions like CW signal ,pulsed RF signal etc.

Table 3. Electrical Characteristics (T_c = 25°C unless otherwise noted)

DC Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	V _{GS} =-8V; I _{DS} =4mA	V _{DSS}		150		V
Gate Threshold Voltage	$V_{DS} = 28V, I_D = 4mA$	V _{GS} (th)	-4		-2	V
Gate Quiescent VoltageVDS =32V, IDS =50mA, Measured in Functional Test		V _{GS(Q)}		-2.35		V

TYPICAL CHARACTERISTICS

High efficiency tuning

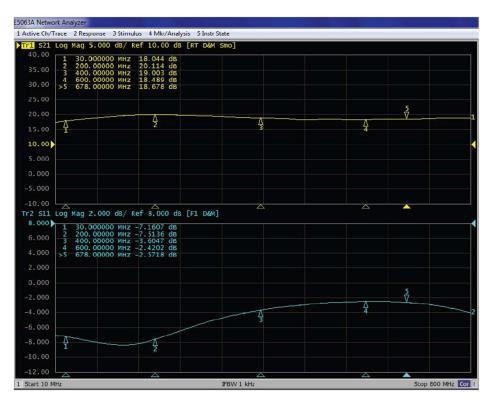
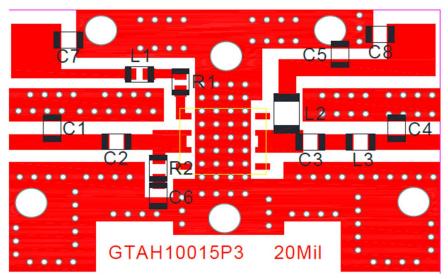
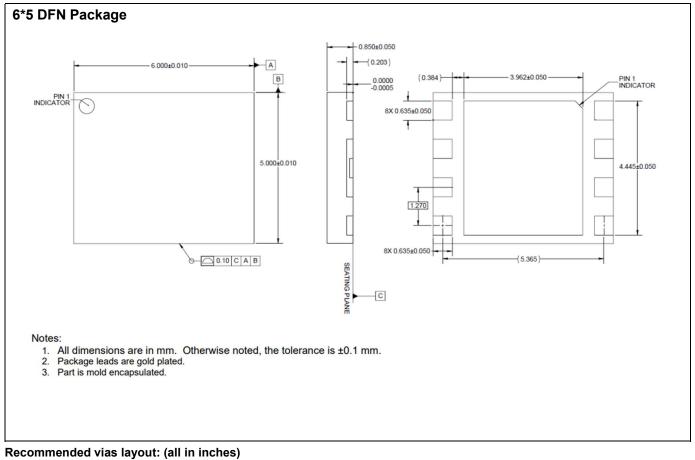


Figure 1. Network analyzer output S11/S21

Reference circuit of test fixture assembly diagram

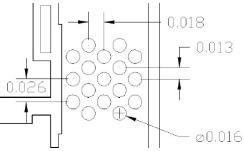

Figure 5. 30-678MHz fixture

Table 4: components designations and values of 30-678Mhz fixture

Component	Description	Suggested Manufacturer	
C1	5.6pF	DLC75D	
C2,C6	1uF	0603	
C3	2200pF	ATC800B	
C4	1.2pF	DLC75D	
C5	100pF	DLC75D	
C7,C8	10uF	10uF/50V	
R1	22ohm	0603	
R2	30ohm	0603	
L1,L3	4.7nH	0805	
L2	1.5mH		
	1	1	

Package Dimensions

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2021/12/3	V1.0	Preliminary Datasheet Creation based on high eff tuning

Application data based on ZL-21-30

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.