70W, S band High Power RF LDMOS FETs

Description

The MG3107AS is a 70-watt, internally matched, single ended LDMOS FETs, designed for multiple applications within 2.7-3.1GHz. It can be used in Class AB/B and Class C for all typical modulation formats. Within narrower band like 2.7-2.9GHz, it can be used as 90W.

Typical Performance (On Innogration fixture with device soldered):

 V_{DD} = 32 Volts, I_{DQ} = 50 mA, CW.

Freq	P1dB	P1dB	P1dB	P1dB	P3dB	P3dB	P3dB
(MHz)	(dBm)	(W)	Eff(%)	Gain(dB)	(dBm)	(W)	Eff(%)
2800	49.52	89.5	45.8	10.36	50.17	103.9	46.5
2900	49.58	90.8	46.0	10.98	50.27	106.5	46.8
3000	49.01	79.6	45.7	11.31	49.77	94.9	46.7
3100	48.14	65.2	45.0	11.2	48.86	77.0	45.0

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

Suitable Applications

- S band pulse amplifier
- ISM applications

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+65	Vdc
GateSource Voltage	V _{GS}	-10 to +10	Vdc
Operating Voltage	Vdd	+32	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit	
Thermal Resistance, Junction to Case	Rejc	0.9	°C/W	
T_{C} = 85°C, T_{J} =200°C, DC test	I NOJC	0.9		

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2

Document Number: MG3107AS Product Datasheet V1.0

Characteristic	Symbol	Min	Тур	Max	Unit
DC Characteristics	•				
Zero Gate Voltage Drain Leakage Current				100	^
(V _{DS} = 65V, V _{GS} = 0 V)	DSS			100	μΑ
Zero Gate Voltage Drain Leakage Current					
(V _{DS} = 28 V, V _{GS} = 0 V)	IDSS	I _{DSS}		1	μΑ
GateSource Leakage Current				4	
(V _{GS} = 10 V, V _{DS} = 0 V)	I _{GSS}		1		μΑ
Gate Threshold Voltage	M (m)		2.0		V
(V _{DS} = 28V, I _D = 450 μA)	V _{GS} (th)				v
Gate Quiescent Voltage	V		3.1		V
(V_{DD} = 28 V, I_D = 380 mA, Measured in Functional Test)	$V_{GS(Q)}$		3.1		v
Functional Tests (On Demo Test Fixture, 50 ohm system) V_{DD} = 32 V	/dc, I _{DQ} = 50 mA	, f = 3100 MH	z, Pulse CW S	ignal Measurei	ments.
Power Gain	Gp		9		dB
Drain Efficiency@P1dB	η₀		45		%
3 dB Compression Point	P-3dB	70			W
Input Return Loss	IRL		-10		dB
Load Mismatch (In Innogration Test Fixture, 50 ohm system): V_D	_D = 32 Vdc, I _{DQ} =	= 50 mA, f = 3	100 MHz		
VSWR 10:1 at 70W pulse CW Output Power	No Device Degradation				

_

TYPICAL CHARACTERISTICS

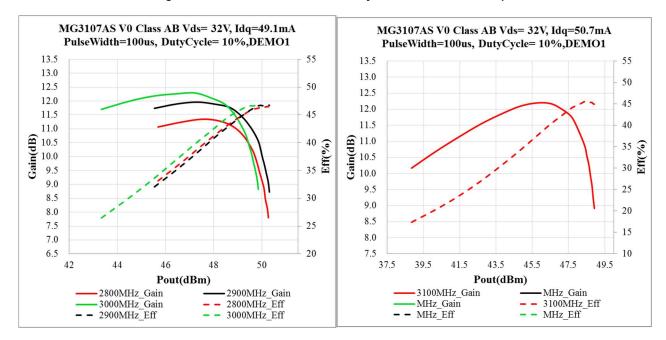


Figure 1. Power Gain and Drain Efficiency as Function of Pulse Output Power

Document Number: MG3107AS Product Datasheet V1.0

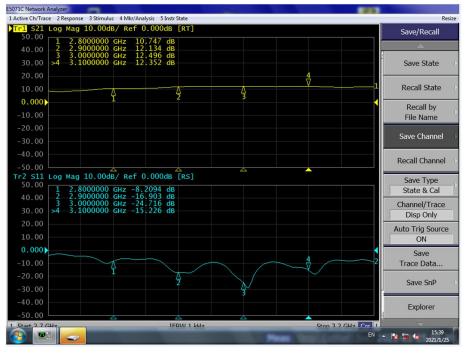
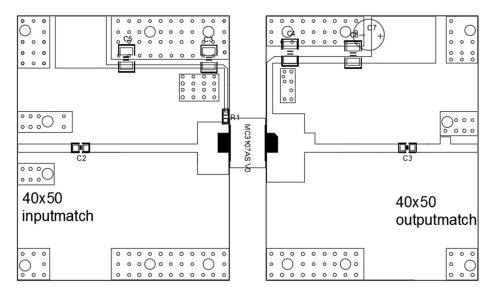
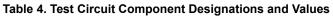
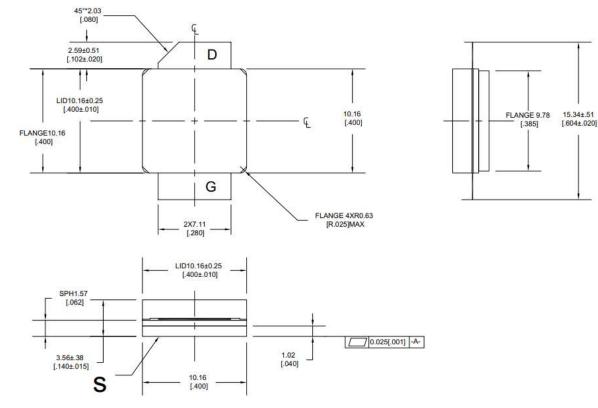




Figure 2. Network analyzer output S11/S21 (VDS=32V IDQ=380mA VGS=3.1V)

Figure 3. Test Circuit Component Layout



Component	Description	Suggested		
		Manufacturer		
C2,C3,C4	12pF	DLC75D		
C5 C6	Ceramic multilayer capacitor, 10uF, 100V	DLC75D		
R1	Chip Resistor,9.1 Ω			
C7	470UF 63V			
PCB	0.762mm [0.030"] thick, εr=3.48, Rogers RO	0.762mm [0.030"] thick, εr=3.48, Rogers RO4350B, 1 oz. copper		

Package Outline

Earless flanged ceramic package; 2 leads

Unit: mm [inch] Tolerance .xx +/- 0.01 .xxx +/- 0.005 inches

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2021/1/26	Rev 1.0	Product Datasheet

Application data based on HL-21-03

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.