750W/900W, 50V High Power RF LDMOS FETs

Description

The MC1275VS is single ended 50V LDMOS, internally matched for pulse applications operating over 1030 to 1090 MHz at power 900W and can be used over the 960 to 1215 MHz band at reduced power 750W.

It is suitable for use in commercial pulse applications with large duty cycles and long pulses, such as IFF, secondary surveillance radars, ADS--B transponders, DME and other complex pulse chains.

Special note:

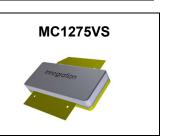
With 2 pieces of MC1275VS in form of push pull pairs, it can output 1700W over either 1030 to 1090MHz, or output 1400W over 960-1215MHz, as leading output capability while in highly compact PCB area.

Typical performance(on 960-1215MHz application board with devices soldered)

V_{DS}=50V,Idq=100mA, Pulsed CW, 10% duty cycle, 128us pulse width

Freq	P1dB	P1dB	P1dB	P1dB	P3dB	P3dB	P3dB
(MHz)	(dBm)	(W)	Eff(%)	Gain(dB)	(dBm)	(W)	Eff(%)
960	58.56	718.3	56.5	16.7	59.17	825.4	56.9
1030	59.22	836.4	54.8	17.51	60.24	1056.7	57.8
1090	59.45	881.0	55.4	16.83	60.27	1064.8	57.2
1150	59.22	834.8	58.8	16.48	59.94	987.1	60.0
1215	58.29	675.1	59.5	17.09	59.1	813.6	61.0

$V_{DS}=52V,I_{DQ}=100mA$


Freq	P1dB	P1dB	P1dB	P1dB	P3dB	P3dB	P3dB
(MHz)	(dBm)	(W)	Eff(%)	Gain(dB)	(dBm)	(W)	Eff(%)
960	58.91	778.5	57.0	16.82	59.49	889.7	57.0
1030	59.64	920.8	55.7	17.55	60.56	1138.5	58.4
1090	59.72	938.6	55.0	16.8	60.53	1129.6	56.6
1150	59.55	901.5	58.5	16.56	60.25	1059.1	59.7
1215	58.67	736.2	59.5	17.21	59.45	880.2	60.7

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+115	Vdc
GateSource Voltage	V_{GS}	-10 to +10	Vdc
Operating Voltage	$V_{ exttt{DD}}$	+55	Vdc

Document Number: MC1275VS Preliminary Datasheet V1.0

Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case			
Pulse: Case Temperature 75 C, 900 W Peak, 128 usec Pulse Width,	Rejc	0.03	°C/W
10% Duty Cycle, 50 Vdc, 1030 MHz			

Table 3. ESD Protection Characteristics

Test Methodology	Class	
Human Body Model (per JESD22A114)	Class 2	

Table 4. Electrical Characteristics ($T_A = 25$ °C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
DC Characteristics					
Drain-Source Breakdown Voltage	V _{pss}	115			V
(V _{GS} =0V; I _D =100uA)	V DSS	113			V
Zero Gate Voltage Drain Leakage Current				10	
$(V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V})$	I _{DSS}			10	μΑ
GateSource Leakage Current	I _{GSS}			1	μΑ
$(V_{GS} = 6 \text{ V}, V_{DS} = 0 \text{ V})$	IGSS			ľ	μΑ
Gate Threshold Voltage	V _{GS} (th)		1.6		V
$(V_{DS} = 50V, I_D = 600 \text{ uA})$	V GS(U1)		1.0		V
Gate Quiescent Voltage	$V_{GS(Q)}$		3		V
$(V_{DD} = 50 \text{ V}, I_{DQ} = 100 \text{ mA}, \text{ Measured in Functional Test})$	V GS(Q)		3		V

Load Mismatch (In Innogration Test Fixture, 50 ohm system): $V_{DD} = 50 \text{ Vdc}$, $I_{DQ} = 100 \text{ mA}$, f = 1030 MHz, pulse width:128us, duty cycle:10%,

VSWR: > 7:1 at All Phase Angles	No Device Degradation
---------------------------------	-----------------------

TYPICAL CHARACTERISTICS

Figure 1: Pulsed CW Gain and Power Efficiency as a Function of Pout within 960-1215MHz at different drain voltage

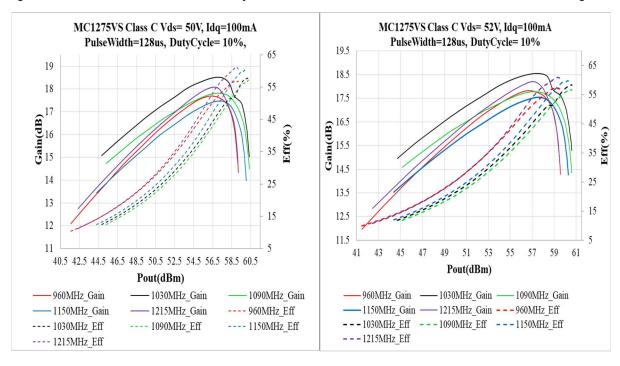
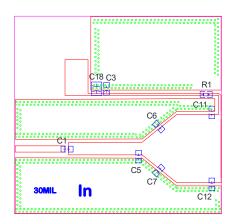
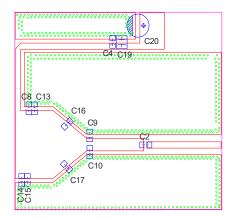




Figure 2: Network analyzer output S11/S21 at 50V ldq=1.5A

Reference Circuit of Test Fixture Assembly Diagram (Layout file upon request, 30mil RO4350)

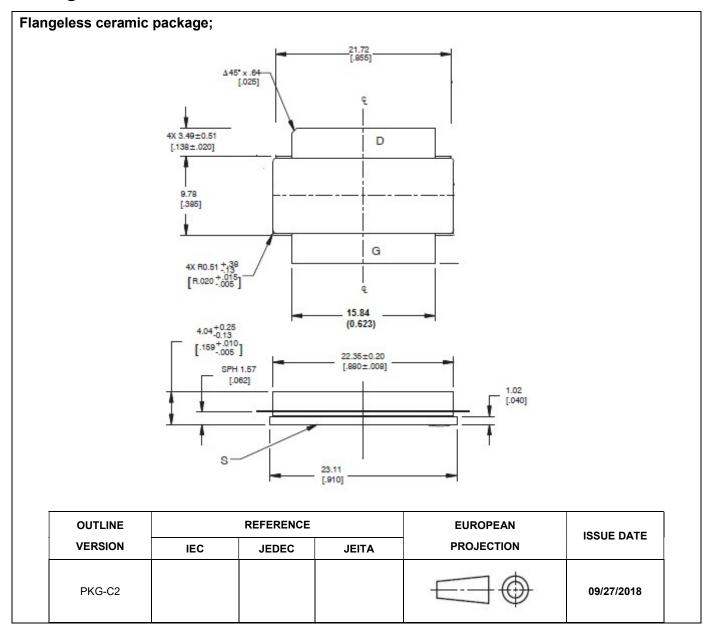


Table 5. Test Circuit Component Designations and Values

Designator	Comment	Footprint	Quantity
C1,C2, C3, C4	33pF	0805	4
C5, C6, C7, C8,	2.055	0805	6
C9, C10	2.0pF	0605	6
C11, C12	6.8pF	0805	2
C13, C14, C15	4.3pF	0805	3
C16, C17	1.0pF	0805	2
C18, C19	10uF/100V	1210	2
C20	1000uF/63V		1
R1	10ohm	0603	1

Package Outline

Document Number: MC1275VS Preliminary Datasheet V1.0

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2021/2/20	Rev 1.0	Preliminary datasheet

Application data based on LSM-21-03

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.