10W, 28V High Power RF LDMOS FETs

Description

The M8M1001 is a 10-watt, highly rugged, unmatched LDMOS FET, designed for wide-band commercial and industrial applications at frequencies up to 2 GHz. It can be used in Class AB/B and Class C for all typical modulation formats.

Typical Performance (On Innogration fixture with device soldered):

 $V_{DD} = 28 \text{ Volts}, I_{DQ} = 100 \text{ mA}, CW.$

Frequency	Gp (dB)	P _{-1dB} (W)	η _D @P ₋₁ (%)	
960 MHz	23	13	63	

•Typical Performance (On Innogration fixture with device soldered):

 $V_{DD} = 12 \text{ Volts}, I_{DQ} = 10 \text{ mA}, CW.$

Frequency	Gp (dB)	P _{-1dB} (W)	η _D @P ₋₁ (%)
120 MHz	13	5	58

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

Suitable Applications

- 2-30MHz (HF or Short wave communication)
- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)
- 118 -140MHz (Avionics)

- 136-174MHz (Commercial ground communication)
- 160-230MHz (TV VHF III)
- 30-512MHz (Jammer, Ground/Air communication)
- 470-860MHz (TV UHF)
- 100kHz 1000MHz (ISM, instrumentation)

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+95	Vdc
GateSource Voltage	$V_{\sf GS}$	-10 to +10	Vdc
Operating Voltage	V _{DD}	+40	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _c	+150	°C
Operating Junction Temperature	T₃	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Do 10	2	0000
T _C = 85°C, T _J =200°C, DC test	Rejc	3	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
------------------	-------

M8M1001

M8M1001 LDMOS TRANSISTOR

Document Number: M8M1001 Preliminary Datasheet V1.0

Human Body Model (per JESD22A114)			Class 2			
Table 4. Electrical Characteristics (TA = 25 °C unless otherwise noted)						
Characteristic	Symbol	Min	Тур	Max	Unit	
DC Characteristics						
Drain-Source Voltage	V		0.5			
V_{GS} =0, I_{DS} =1.0mA	$V_{(BR)DSS}$		95		V	
Zero Gate Voltage Drain Leakage Current				4	^	
$(V_{DS} = 75V, V_{GS} = 0 V)$	I _{DSS}			1	μΑ	
Zero Gate Voltage Drain Leakage Current				4	^	
$(V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V})$	I _{DSS}			1	μΑ	
GateSource Leakage Current				4	^	
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}			1	μΑ	
Gate Threshold Voltage	V (II)		0.07		V	
$(V_{DS} = 28V, I_D = 50 \mu A)$	V _{GS} (th)		2.07		V	
Gate Quiescent Voltage	V		2.2		V	
$(V_{DD} = 28 \text{ V}, I_D = 100 \text{ mA}, Measured in Functional Test)$	$V_{GS(Q)}$		3.3		V	
Common Source Input Capacitance			TDD		, r	
$(V_{GS} = 0V, V_{DS} = 28 V, f = 1 MHz)$	C _{ISS}	TBD			pF	
Common Source Output Capacitance			TDD			
$(V_{GS} = 0V, V_{DS} = 28 V, f = 1 MHz)$	Coss		TBD		pF	
Common Source Feedback Capacitance					_	
$(V_{GS} = 0V, V_{DS} = 28 V, f = 1 MHz)$	C_{RSS}		TBD		pF	
Functional Tests (In Demo Test Fixture, 50 ohm system) V _{DD} = 28 V	$^{\prime}$ dc, $I_{DQ} = 100$ mA,	f = 960 MHz,	CW Signal Me	asurements.		
Power Gain	Gp		23		dB	
Drain Efficiency@P1dB	η _D		63		%	
1 dB Compression Point	P _{-1dB}		13		W	
Input Return Loss	IRL		-7		dB	
Load Mismatch (In Innogration Test Fixture, 50 ohm system): V _{DD} = 28 Vdc, I _{DQ} = 100 mA, f = 960 MHz						
VSWR 20:1 at 13W pulse CW Output Power No Device Degradation						

TYPICAL CHARACTERISTICS

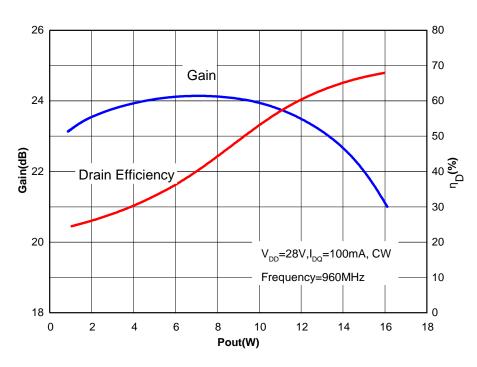
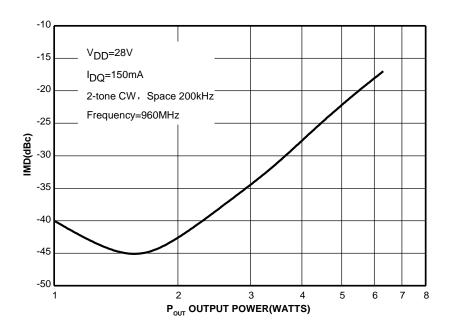
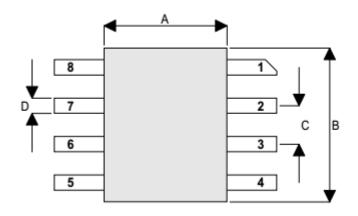
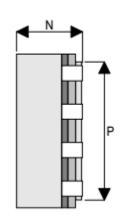
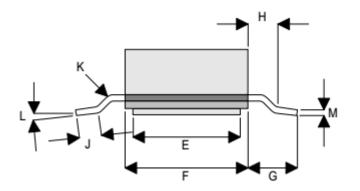


Figure 1. Power gain and drain efficiency as function of Power out


Figure 2. IMD3 versus Output Power


M8M1001 LDMOS TRANSISTOR

Package Outline

SO8 Ceramic package; Gull-wing 8 leads

Pin Connection

Pin1—Source	Pin5—Source			
Pin2—Drain	Pin6—Gate			
Pin3—Drain	Pin7—Gate			
Pin4—Source	Pin8—Source			
Bottom—Source				

UNIT	Α	В	С	D	E	F	G	Н	J	к	L	М	N	Р
mm	4.06	5.08	1.27	0.51	3.56	4.06	1.65	0.76	0.51 1.02	45°	0° 7°	0.20	2.18	4.57
Tol.	±0.08	±0.08	±0.08	±0.08	±0.08	±0.08	±0.08	0.25 0	Min. Max.	Max.	Min. Max.	±0.08	±0.08	±0.08
Inches	0.160	0.200	0.050	0.020	0.140	0.160	0.065	0.030	0.020 0.040	45°	0° 7°	0.008	0.086	0.180
Tol.	±0.003	±0.003	±0.003	±0.003	±0.003	±0.003	±0.003	0.010 0	Min. Max.	Max.	Min. Max.	±0.003	±0.003	±0.003

OUTLINE		REFERENCE	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	IOGGE DATE
PKG-M8G					5/6/2017

M8M1001 LDMOS TRANSISTOR

Document Number: M8M1001 Preliminary Datasheet V1.0

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2018/12/17	Rev 1.0	Preliminary Datasheet

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.