## Gallium Nitride 28V 80W, RF Power Transistor

### Description

The NU6008H is a 80W 28V, internally matched GaN HEMT, designed for multiple applications with frequencies up to 4GHz.

It can support pulse, CW at saturated condition or any modulation signal at backoff condition.

There is no guarantee of performance when this part is used in applications designed Outside of these frequencies.

•Typical performance (on Innogration 2.7-3.1GHz wideband fixture with device soldered)

| VDS= 28V, Vpeak=-2.62V, Idq=150mA |          |             |          |        |         |
|-----------------------------------|----------|-------------|----------|--------|---------|
| Freq (MHz)                        | P-1(dBm) | P-1Gain(dB) | P-3(dBm) | P-3(W) | Eff (%) |
| 2700                              | 49.75    | 13.1        | 50.39    | 109    | 55.8    |
| 2900                              | 49.27    | 14.2        | 50.17    | 104    | 61.2    |
| 3100                              | 48.64    | 13.3        | 49.75    | 94     | 63.6    |

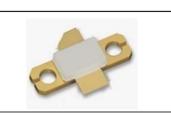
### **Applications and Features**

- Suitable for wireless communication infrastructure, wideband amplifier, EMC testing, ISM etc.
- · High Efficiency and Linear Gain Operations
- Thermally Enhanced Industry Standard Package

### Important Note: Proper Biasing Sequence for GaN HEMT Transistors Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage (28V)
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level
- Table 1. Maximum Ratings (Not simultaneous, TC = 25°C unless otherwise noted)

| Rating                                     | Symbol           | Value       | Unit |
|--------------------------------------------|------------------|-------------|------|
| DrainSource Voltage                        | V <sub>DSS</sub> | 150         | Vdc  |
| GateSource Voltage                         | V <sub>GS</sub>  | -10,+2      | Vdc  |
| Operating Voltage                          | Vdd              | 40          | Vdc  |
| Maximum Forward Gate Current               | Igmax            | 18          | mA   |
| Storage Temperature Range                  | Tstg             | -65 to +150 | °C   |
| Case Operating Temperature                 | Tc               | +150        | °C   |
| Operating Junction Temperature(See note 1) | TJ               | +225        | °C   |


#### 1. Continuous operation at maximum junction temperature will affect MTTF

#### **Table 2. Thermal Characteristics**

| Characteristic                                               | Symbol  | Value | Unit |
|--------------------------------------------------------------|---------|-------|------|
| Thermal Resistance, Junction to Case                         | Rejc-dc | 2.4   | °C/W |
| $T_c$ = 85°C, $T_J$ =200°C, DC Power Dissipation(See note 1) |         | 2.4   |      |

ReJC-DC is tested at only DC condition, it is related to the highest thermal resistor value among all test conditions. It might be

differently lower in different RF operation conditions like CW signal ,pulsed RF signal etc.



- High Reliability Metallization Process
- Excellent thermal Stability and Excellent Ruggedness
- · Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

#### Turning the device OFF


- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

#### Table 3. Electrical Characteristics (T<sub>C</sub> = 25°C unless otherwise noted)

#### **DC Characteristics**

| Characteristic Conditions                                                  |                                 | Symbol               | Min                       | Тур                       | Max            | Unit    |
|----------------------------------------------------------------------------|---------------------------------|----------------------|---------------------------|---------------------------|----------------|---------|
| Drain-Source Breakdown Voltage V <sub>GS</sub> =-8V; I <sub>DS</sub> =18mA |                                 | V <sub>DSS</sub>     | 150                       |                           |                | V       |
| Gate Threshold Voltage V <sub>DS</sub> = 28V, I <sub>D</sub> =18mA         |                                 | V <sub>GS</sub> (th) | -4                        | -                         | -2             | V       |
| Gate Quiescent VoltageVDS =28V, IDS =150mA,<br>Measured in Functional Test |                                 | V <sub>GS(Q)</sub>   |                           | -2.6                      |                | V       |
| unctional Tests (In Innogration 1.60                                       | Hz narrow band Test Fixture, 50 | ohm system) :        | V <sub>DD</sub> = 28 Vdc, | I <sub>DQ</sub> = 150 mA, | f = 3.1GHz, Pu | lsed CW |
| Characte                                                                   | eristic                         | Symbol               | Min                       | Тур                       | Max            | Unit    |
| Power Gain                                                                 |                                 | Gp                   |                           | 11                        |                | dB      |
| Drain Efficiency @ P <sub>SAT</sub>                                        | Eff                             | 60                   |                           |                           | %              |         |
| Saturated Power                                                            | P <sub>SAT</sub>                | 49                   |                           |                           | dBm            |         |
| Input Return Loss                                                          | ut Return Loss                  |                      |                           | -5                        |                | dB      |
| Mismatch stress at all phases (Device                                      | VSWR                            |                      | 10:1                      |                           | Ψ              |         |

Figure 1: Efficiency and power gain as function of Pout : Pulsed CW: 100us width , 10% duty cycle



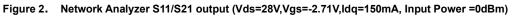
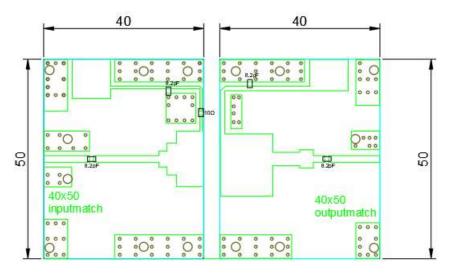






Figure 4: Picture of application board 2.7-3.1GHz class AB (PCB: 20 Mil Rogers 4350, Layout file upon request)



## **Package Outline**

### Flanged ceramic package; 2 leads

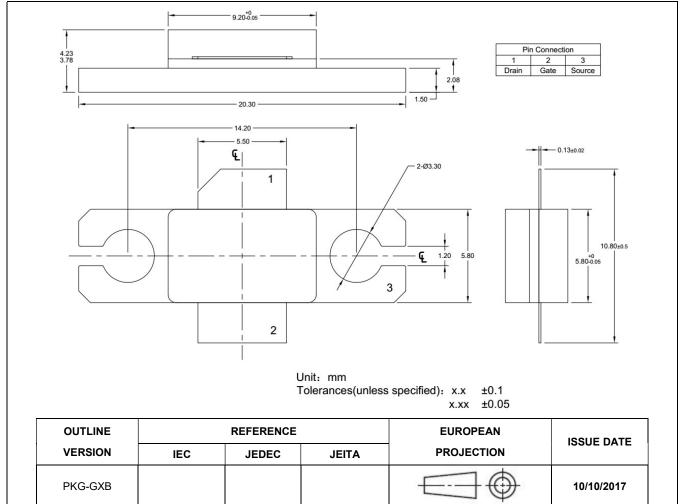



Figure 1. Package Outline PKG-G2E

### **Revision history**

#### Table 5. Document revision history

| Date      | Revision | Datasheet Status               |  |
|-----------|----------|--------------------------------|--|
| 2021/6/11 | V1.0     | Preliminary Datasheet Creation |  |
|           |          |                                |  |

Application data based on HJ-21-09

#### Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.