MK0535VPXS-F

300W, HF-0.5GHz 50V High Power RF LDMOS

Description

The MK0535VPXS-F is a 300W Push Pull 50V LDMOS, unmatched for any applications within HF-0.5GHz

It supports CW, and pulsed and any modulated signal at either saturated or linear application.

It can be the drop-in replacement of its equivalent 300W VDMOS like BLF278/MRF151G/VRF151G with higher efficiency, improved thermal performance and stability.

Typical performance(on Innogration test board with device soldered)
 Signal: CW, Vgs=3.44v,Vds=50v,Idq=300mA

Freq(MHz)	Pin(dBm)	Pout(dBm)	Pout(W)	lds(A)	Gain(dB)	Eff(%)
175	35.5	55.5	355	9.5	20	75

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- · Excellent thermal stability, low HCI drift

Suitable Applications

- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)
- 160-230MHz (TV VHF III)
- 136-174MHz (Commercial ground communication)

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- · Pb-free, RoHS-compliant
- Laser Exciter
- Synchrotron
- MRI
- Plasma generator
- Weather Radar

Table 1. Maximum Ratings

-				
Rating	Symbol	Value	Unit	
DrainSource Voltage	V _{DSS}	+125	Vdc	
GateSource Voltage	V _{GS}	-10 to +10	Vdc	
Operating Voltage	V _{DD}	+55	Vdc	
Storage Temperature Range	Tstg	-65 to +150	°C	
Case Operating Temperature	Tc	+150	°C	
Operating Junction Temperature	TJ	+225	°C	

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Dolo	TDD	00/14/
T _C = 85°C, T _J =200°C, DC test	RθJC	TBD	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class	
Human Body Model (per JESD22A114)	Class 2	

Table 4. Electrical Characteristics ($T_A = 25$ °C unless otherwise noted)

Characteristic	Symbol	Min	Typ	May	Linit
Characteristic	Symbol	Min	тур	Max	Unit

DC Characteristics (per half section)

MK0530VPXS-F LDMOS TRANSISTOR

Preliminary Datasheet V1.0

Drain-Source Voltage V _{GS} =0, I _{DS} =1.0Ma	V _{(BR)DSS}	135		V
Zero Gate Voltage Drain Leakage Current (V _{DS} = 75V, V _{GS} = 0 V)	I _{DSS}	 	1	μΑ
Zero Gate Voltage Drain Leakage Current (V _{DS} = 50 V, V _{GS} = 0 V)	I _{DSS}	 	1	μΑ
GateSource Leakage Current (V _{GS} = 10 V, V _{DS} = 0 V)	I _{GSS}	 	1	μΑ
Gate Threshold Voltage	$V_{GS}(th)$	 2.65		V
(V _{DS} = 50V, I _D = 600 μA) Gate Quiescent Voltage	V _{GS(Q)}	 3.44		V
(V _{DD} = 50 V, I _D = 300 mA, Measured in Functional Test) Drain source on state resistance	Rds(on)			mΩ
(Vds=0.1V, Vgs=10V) Common Source Input Capacitance	Rus(on)			11122
(V _{GS} = 0V, V _{DS} =50 V, f = 1 MHz)	C _{ISS}			pF
Common Source Output Capacitance (V _{GS} = 0V, V _{DS} =50 V, f = 1 MHz)	Coss			pF
Common Source Feedback Capacitance $(V_{GS} = 0V, V_{DS} = 50 V, f = 1 MHz)$	C _{RSS}			pF

Load Mismatch (In Innogration Test Fixture, 50 ohm system): V_{DD} = 50 Vdc, I_{DQ} = 300 mA, f = 500MHz, pulse width:100us, duty cycle:10%

Load 10:1 All phase angles, at 350W Pulsed CW Output Power	No Device Degradation
--	-----------------------

TYPICAL CHARACTERISTICS

Figure 1: CW Gain and Power Efficiency as a Function of Pout at 175MHz

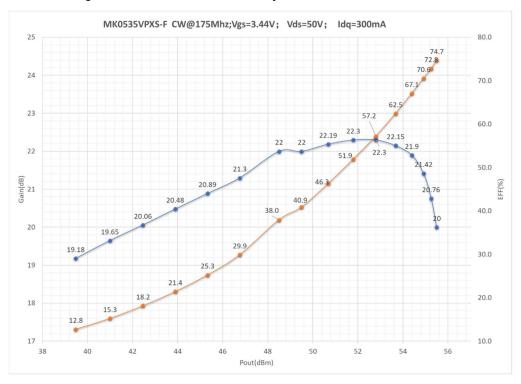
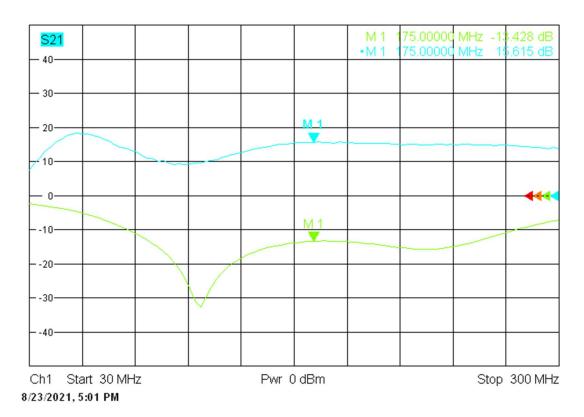
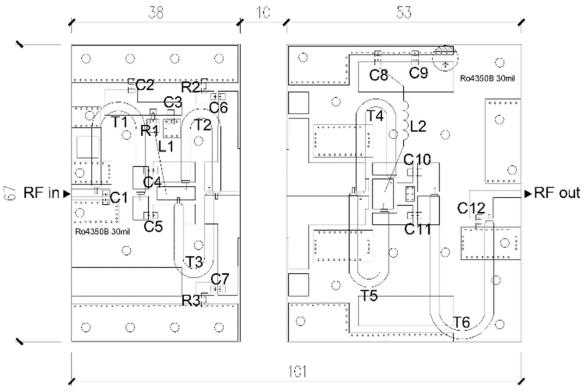
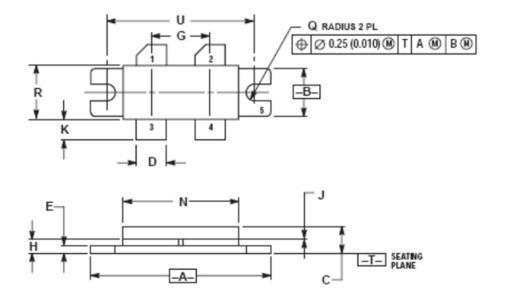



Figure 2: Network analyzer output S11/S21

MK0530VPXS-F LDMOS TRANSISTOR

Reference Circuit of Test Fixture Assembly Diagram (PCB file upon request)




Table 1. Test Circuit Component Designations and Values (175MHz)

Component	Description	Suggested Manufacturer
C1	8.2pF	ATC800B
C2、C6、C7、C9	Ceramic multilayer capacitor, 10nF, 2KV	
C3、C4、C5、C8、C10、C11	1000pF	ATC800B
C12	2.2pF	ATC800B
R1	Chip Resistor,620Ω,1206	
R2、R3	Chip Resistor,9.1Ω,1206	
T1, T6	50Ω, 80mm	
T2、T3	17Ω, 48mm	
T4、T5	17Ω, 80mm	
L1	直径 1mm,栅极馈电线	
L2	直径 1mm,绕径 5mm,6 圈	
PCB	30mil thickness,Ro4350B	

Package Outline

Flanged ceramic package;

Notice: MK0535VPXS (Earless) soldered on additional plated flange

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIHENSION: INCH.

	INCHES		HILLIN	INETERS	
DIM	HIN	MAX	MIN	HAX	
A	1.330	1.350	33.79	34.29	
В	0.370	0.410	9.40	10.41	
С	0.190	0.230	4.83	5.84	
D	0.215	0.235	5.47	5.96	
E	0.050	0.070	1.27	1.77	
G	0.430	0.440	10.92	11.18	
Н	0.102	0.112	2.59	2.84	
J	0.004	0.006	0.11	0.15	
K	0.185	0.215	4.83	5.33	
N	0.845	0.875	21.46	22.23	
Q	0.060	0.070	1.52	1.78	
R	0.390	0.410	9.91	10.41	
U	1.100 BSC		27.94	BSC	

STYLE 2:

PIN 1. DRAIN

2. DRAIN 3. GATE

5. SOURCE

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2021/8/23	Rev 1.0	Preliminary datasheet

Application data based on JF-21-10

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose."Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.