Innogration (Suzhou) Co., Ltd.

Gallium Nitride 28V, 250W,1.5-1.7GHz RF Power Transistor Description

The NK1722HS is a 250W, both input and output matched GaN HEMT, ideal for multiple

applications from 1.5-1.7GHz, with leading performance. It can support CW, pulse or any modulated signal.

There is no guarantee of performance when this part is used outside of stated frequencies.

• Typical performance across 1.5-1.7GHz class AB application circuit with device soldered

VDS= 28V, IDQ=200mA(Vgs=-2.71V) CW

Freq(MHz)	Pin(dBm)	Pout(dBm)	Pout(W)	IDS(A)	Gain(dB)	Eff(%)	2nd_harmonic
1500	41.52	54.61	289.1	16.95	13.09	60.9%	-20
1550	41.54	54.72	296.5	17.2	13.18	61.6%	-23
1600	41.59	54.6	288.4	16.27	13.01	63.3%	-23
1650	41.61	54.1	257.0	14.5	12.49	63.3%	-21
1700	41.63	53.81	240.4	13	12.18	66.1%	-20.5

Applications

- L band power amplifier
- GPS, Beidou jammer
- 1.5GHz LTE amplifier

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level
- Table 1. Maximum Ratings

- **Turning the device OFF** 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

V _{DSS}	+150	Vdc
		vuc
V _{GS}	-10 to +2	Vdc
V _{DD}	32	Vdc
lgs	72	mA
Tstg	-65 to +150	°C
Tc	+150	°C
TJ	+225	°C
	V _{DD} Igs Tstg T _C	V _{DD} 32 Igs 72 Tstg -65 to +150 T _c +150

Table 2. Thermal Characteristics

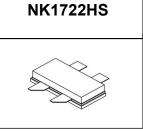
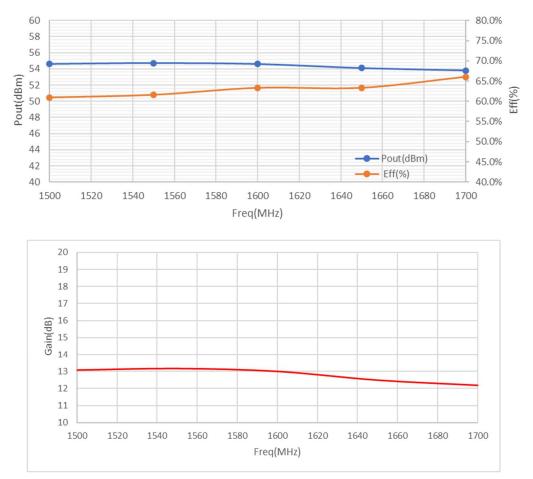

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA	Rejc	0.8	°C /W
T _c = 85°C, at Tj=200°C	KelC	0.8	-0.700

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)

DC Characteristics (measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=72mA	V _{DSS}		150		V
Gate Threshold Voltage	VDS =10V, ID = 72mA	V _{GS(th)}	-4		-2	V

Document Number: NK1722HS Preliminary Datasheet V1.1

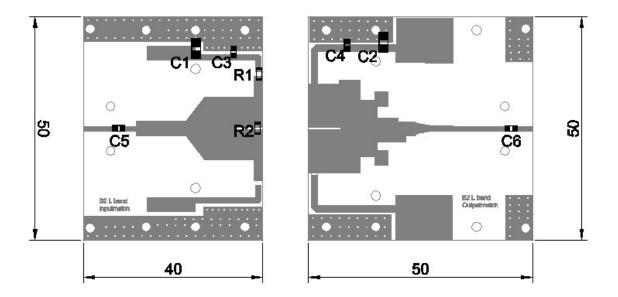


Innogration (Suzhou) Co., Ltd.

Document Number: NK1722HS Preliminary Datasheet V1.1

Gate Quiescent Voltage	VDS =50V, IDS=10mA, Measured in Functional Test	$V_{GS(Q)}$		-2.71		V
Ruggedness Characteristics						
Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	1.6 GHz, Pout=250W Pulsed CW					
	All phase,			10:1		
	No device damages					

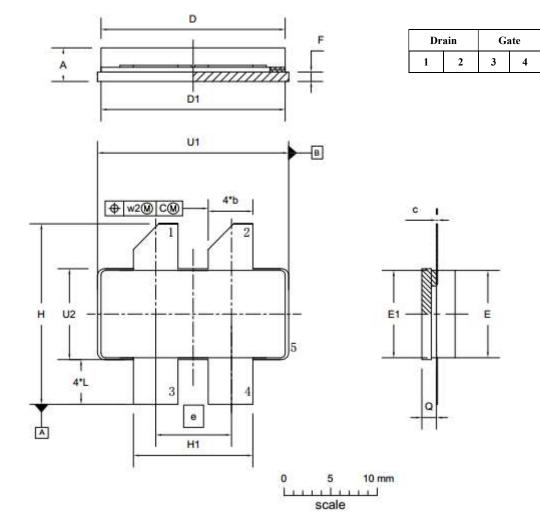
Figure 2:Pout, Efficiency and power gain across 1.5-1.7GHz class AB) CW signal



Innogration (Suzhou) Co., Ltd.

Figure 3: Network analyzer output, S11 and S21 (VDS=28V VGS=-2.75V IDQ=450mA)

Figure 4: Picture of application board 1.5-1.7GHz class AB


Table 4. Bill of materials of application board (PCB layout upon request)

Component	Description	
C1、C2	10uF/50V	1210
C3、C4、C5、C6	39pF	Beijing YN MQ101111
R1、R2	Chip Resistor,9.1Ω,1206	
РСВ	20Mil Rogers 4350B	

Source

5

Earless Flanged Ceramic Package; 4 leads

	UNIT	A	b	с	D	D ₁	e	E	E1	F	Н	H1	L	Q	U1	U2	W1	W ₂
		4.72	4.67	0.15	20.02	19.96	7.00	9.50	9.53	1.14	19.94	12.98	5.33	1.70	20.70	9.91	0.05	0.54
	mm	3.43	4.93	0.08	19.61	19.66	7.90	9.30	9.25	0.89	18.92	12.73	4.32	1.45	20.45	9.65	0.25	0.51
Ì		0.186	0.194	0.006	0.788	0.786	0.014	0.374	0.375	0.045	0.785	0.511	0.210	0.067	0.815	0.390	0.04	0.00
	inches	0.135	0.184	0.003	0.772	0.774	0.311	0.366	0.364	0.035	0.745	0.501	0.170	0.057	0.805	0.380	0.01	0.02

OUTLINE		REFERENCE		EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	
PKG-B4					03/12/2013

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2022/8/23	V1.0	Preliminary Datasheet Creation
2022/10/4	V1.1	Modify the picture and drawing from BY2 to BY4

Application data based on: JF-22-16

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.