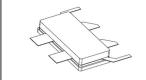
Document Number: STBV20601BY4V Preliminary Datasheet V1.0

GaN HEMT 50V, 630W,1.8-1.9GHz RF Power Transistor Description

The STBV20601BY4V is a dual path 630 watt , Internally matched GaN HEMT, ideal for applications from 1.8 to 1.9GHz especially for LTE/5G


There is no guarantee of performance when this part is used outside of stated frequencies.

Typical WCDMA 1 carrier performance with device soldered

VDS= 50V, IDQ=300mA(Vgm=-3.11V, Vgp=-5.8V)

Frog		Pulse CW Signal			avg=49dBm WC	DMA Signal
Freq (GHz)	P1-Gain (dB)	P3 (dBm)	P3 (W)	Gp (dB)	Eff (%)	ACPR5M (dBc)
1.81	16.19	58.00	630	15.99	54.3	-28.14
1.84	16.80	58.03	635	16.48	54.0	-27.70
1.88	17.37	57.84	608	16.94	53.9	-28.73

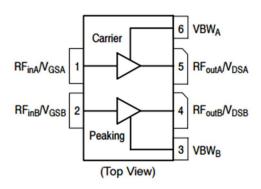
STBV20601BY4V

Applications

- Asymmetrical Doherty amplifier within 1.8-1.9GHz
- Sub-2GHz power amplifier
- CW or pulsed Amplifier

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON


- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Figure 1: Pin Connection definition

Transparent top view (Backside grounding for source)

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V _{GS}	-8 to +0.5	Vdc
Operating Voltage	V_{DD}	55	Vdc
Maximum gate current	Igs	76	mA
Storage Temperature Range	Tstg	-65 to +150	°C

Document Number: STBV20601BY4V Preliminary Datasheet V1.0

Case Operating Temperature	T _C	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA	Rejc	0.0	°C /W
T _C = 85°C, at Pd=100W, on Doherty application board	KejC	0.9	-0 /٧٧

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)

DC Characteristics (Main path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=36mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 36mA	V _{GS(th)}	-4		-2	V
Gate Quiescent Voltage	VDS =50V, IDS=300mA, Measured in Functional Test	$V_{GS(Q)}$		-3.11		V

DC Characteristics (Peak path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=39.6mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 39.6mA	$V_{GS(th)}$	-4		-2	V
Gate Quiescent Voltage	VDS =50V, IDS=300mA, Measured in Functional Test	$V_{GS(Q)}$		-3.1		V

Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	1.84GHz, Pout=80W WCDMA 1					
	Carrier in Doherty circuit	VSWR		10:1		
	All phase,	VOVK		10.1		
	No device damages					

Figure 2: Median Lifetime vs. Channel Temperature

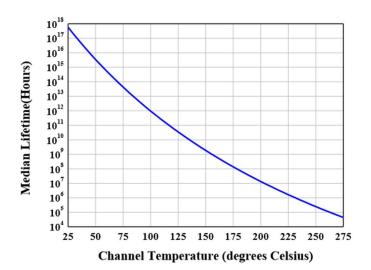
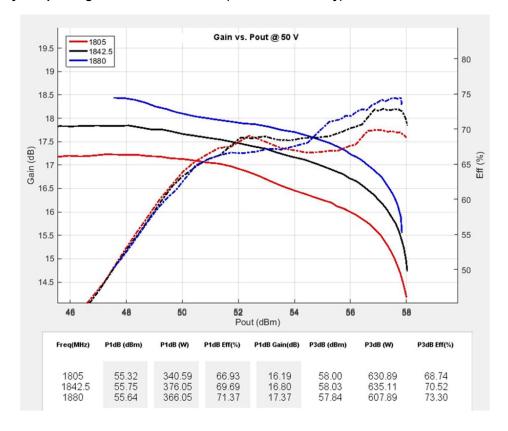
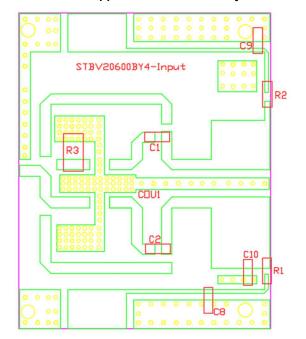


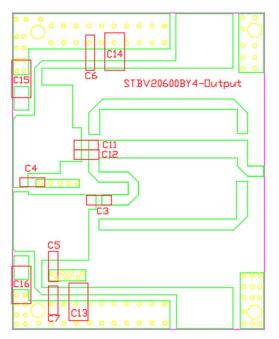
Figure 3: Efficiency and power gain as function of Pout (1.8-1.9GHz Doherty)

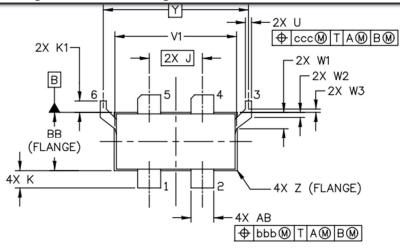


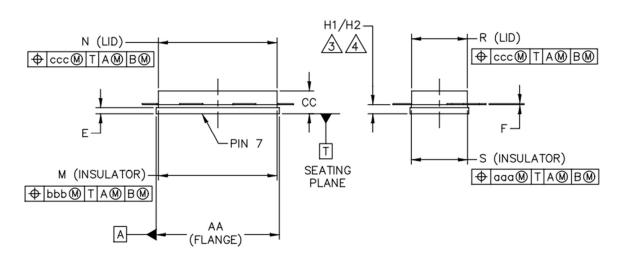

Figure 4: Network analyzer output, S11 and S21 (1.8-1.9GHz Doherty)

Document Number: STBV20601BY4V Preliminary Datasheet V1.0

Figure 5: Picture of application board Doherty circuit for 1.8-1.9GHz




Table 4. Bill of materials of application board (PCB layout upon request, RO4350B 30mils)


Part	Quantity	Description	Part Number	Manufacture
C1,C2,C3,	7	20pFHigh Q	251SHS200BSE	TEMEX
C6,C7,C8,C9		Capacitor		
C4,C5,C10	3	1.5pFHigh Q	251SHS1R5BSE	TEMEX
		Capacitor		
C11,C12	2	3.9pFHigh Q	251SHS3R9BSE	TEMEX
		Capacitor		
C4,C5,C10	3	1.5pFHigh Q	251SHS1R5BSE	TEMEX
		Capacitor		
C13,C14,C15,C16	4	10uF MLCC	RS80R2A106M	MARUWA
R1,R2	2	10 Ω Power Resistor	ESR03EZPF100	ROHM
R3	1	51 Ω Power Resistor	S1206N	RN2
COU1	1	3 dB Bridge	HC2100P03H	YANTEL
T1	1	600W GaN	STBV20601BY4V	Innogration
		Dual Transistor		

Document Number: STBV20601BY4V Preliminary Datasheet V1.0

Earless Flanged Ceramic Package; 6 leads- BY4V

	IN	CH	MILLIN	METER		IN	CH	MILLIM	ETER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	.805	.815	20.45	20.70	R	.365	.375	9.27	9.53
BB	.380	.390	9.65	9.91	S	.365	.375	9.27	9.53
CC	.125	.170	3.18	4.32	U	.035	.045	0.89	1.14
Ε	.035	.045	0.89	1.14	V1	.795	.805	20.19	20.45
F	.004	.007	0.10	0.18	W1	.0975	.1175	2.48	2.98
H1	.057	.067	1.45	1.70	W2	.0225	.0425	0.57	1.08
H2	.054	.070	1.37	1.78	W3	.0125	.0325	0.32	0.83
J	.350 BSC		8.89 BSC		Υ	.956	BSC	24.28	B BSC
K	.0995	.1295	2.53	3.29	Z	R.000	R.040	R0.00	R1.02
K1	.070	.090	1.78	2.29	AB	.145	.155	3.68	3.94
М	.774	.786	19.66	19.96	aaa	.005		0.1	3
Ν	.772	.788	19.61	20.02	bbb	.010 0.25		25	
					ccc	.0)15	0.3	88

Document Number: STBV20601BY4V Preliminary Datasheet V1.0

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2022/01/12	V1.0	Preliminary Datasheet Creation

Application data based on: LWH-22-02

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.