1.5GHz, 20W, 50V High Power RF LDMOS FETs

Description

The M2M1502V is a 20-watt, highly rugged, unmatched LDMOS FET, designed for wideband commercial and industrial applications at frequencies HF to 1.5GHz. It can support pulsed, CW or any modulated signal in form of linear or saturated operations.

•Typical Performance (On Innogration narrow band fixture with device soldered):

Pulsed CW, 20uS width, 10% dule cycle, Vds=50V, Idq=95mA

Freq	P1dB	P1dB	P1dB	P1dB	P3dB	P3dB	P3dB
(MHz)	(dBm)	(W)	Eff(%)	Gain(dB)	(dBm)	(W)	Eff(%)
1485.00	44.06	25.47	57.94	19.42	44.69	29.45	58.62
1500.00	43.69	23.38	57.36	19.51	44.44	27.77	58.44
1515.00	43.39	21.82	56.77	19.47	44.22	26.43	58.72

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift

Suitable Applications

- 2-30MHz (HF or Short wave communication)
- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)
- 118 -140MHz (Avionics)

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant
- 30-512MHz (Jammer, Ground/Air communication)
- 4G/5G cellular base station
- 470-860MHz (TV UHF)
- Avionics 960-1215MHz
- L band 1200-1400MHz

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	115	Vdc
GateSource Voltage	V_{GS}	-10 to +10	Vdc
Operating Voltage	Vdd	+55	Vdc
Storage Temperature Range	Tstg	-65 to +150	٥°
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	T٦	+225	٥°

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case $T_c= 85^{\circ}C$, $T_J=200^{\circ}C$, DC test	Rejc	1.8	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2

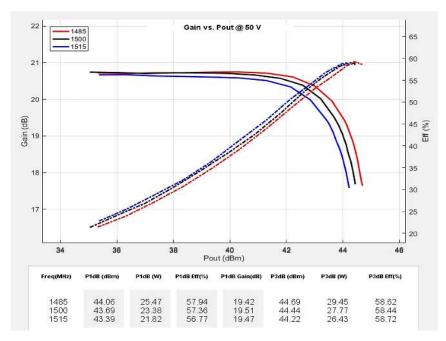

Document Number: M2M1502V Production Datasheet V1.0

Table 4. Electrical Characteristics (TA = 25 $^{\circ}$ C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	
OC Characteristics						
Drain-Source Voltage			445		V	
V _{GS} =0, I _{DS} =1.0mA	V (BR)DSS	V _{(BR)DSS}	115		V	
Zero Gate Voltage Drain Leakage Current				1	٥	
$(V_{DS} = 50V, V_{GS} = 0 V)$	I _{DSS}			1	μA	
GateSource Leakage Current				4	•	
(V _{GS} = 10 V, V _{DS} = 0 V)	I _{GSS}			1	μΑ	
Gate Threshold Voltage			0.70			
$(V_{DS} = 50V, I_{D} = 600 \ \mu A)$	V _{GS} (th)		2.73		V	
Gate Quiescent Voltage	V		2.40		N	
(V_{DD} = 50 V, I_D = 95 mA, Measured in Functional Test)	$V_{GS(Q)}$		3.16		V	
Common Source Input Capacitance	C _{ISS}		24		pF	
(V _{GS} = 0V, V _{DS} =50 V, f = 1 MHz)						
Common Source Output Capacitance	C _{oss}		10		pF	
(V _{GS} = 0V, V _{DS} =50 V, f = 1 MHz)						
Common Source Feedback Capacitance	C _{RSS}		0.1		pF	
$(V_{GS} = 0V, V_{DS} = 50 V, f = 1 MHz)$						
unctional Tests (In Demo Test Fixture, 50 ohm system) V_{DE}	_o = 50 Vdc, I _{DQ} = 95mA, f =	1.5GHz, Pulse	ed CW Signal	, pin=23dBm		
Power Gain@Pout	Gp		20		dB	
Output Power	Pout		20	25	W	
Drain Efficiency@Pout	η _D		55		%	
Input Return Loss	IRL		-5		dB	

TYPICAL CHARACTERISTICS

Figure 1: Pulsed CW Gain and Power Efficiency as a Function of Pout at 1.5GHz

Document Number: M2M1502V Production Datasheet V1.0

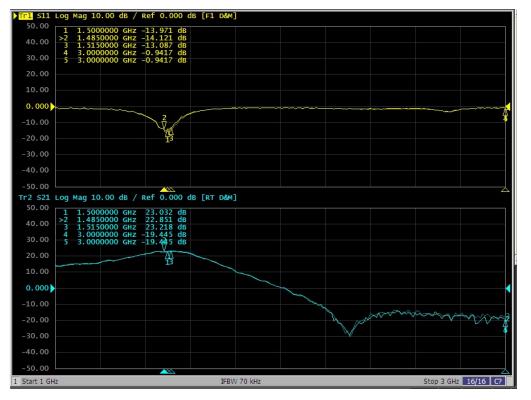
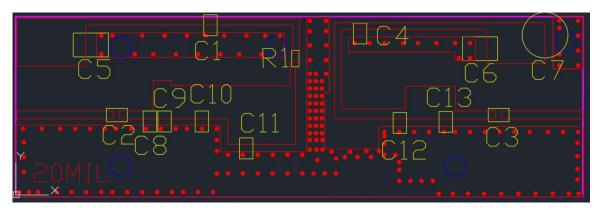
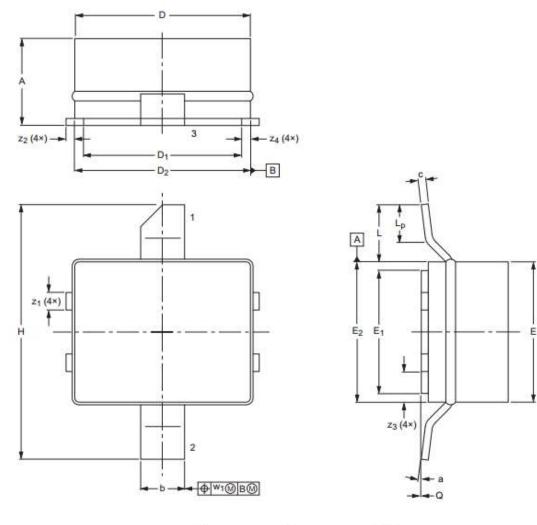



Figure 2: Network analyzer output S11/S21

Figure 3. Test Circuit Component Layout (PCB Roger 4350B 20Mil, PCB file upon request)



ВОМ							
C1,C2,C3,C4	39pF	0805					
R1	10 ohm	0603					
C7	470 uF/63V						
C8	0.2pF	0805					
С9	0.6pF	0805					
C10	1.5pF	0603					
C11	6.8pF	0603					
C12	1.2pF	0603					
C13	2pF	0603					
C5,C6	10 uF	1210					

Document Number: M2M1502V Production Datasheet V1.0

Package Outline

Earless Flanged ceramic package; 2 leads(1-Drain,2-Gate,3-Source)

0 2.5 5 mm scale

U	ŧГ	A	b	с	D	D1	E	E1	E ₂	н	L	L _P	Q	W ₁	Z 1	Z 2	Z 3	Z 4	α
		2.34	1.35	0.23	5.16	4.65	4.14	3.63	4.14	7.49	2.03	1.02	0.1	0.25	0.58	0.25	0.97	0.51	7°
m		2.13	1.19	0.18	5.00	4.50	3.99	3.48	3.99	7.24	1.27	0.51	0.0	0.25	0.43	0.18	0.81	0.00	0°

OUTLINE		REFERENCE	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ICCCL DATE
PKG-MM					18/6/2014

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2022/12/15	V1.0	Production Datasheet Creation

Application data based on ZXY-22-42

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.