1000MHz, 80W, 50V High Power RF LDMOS FETs

Description

The M2U1008V is a 80-watt, highly rugged, unmatched LDMOS FET, designed for wideband commercial and industrial applications at frequencies HF to 1.0 GHz. It can support pulsed, CW or any modulated signal in form of linear or saturated

It can support pulsed, CW or any modulated signal in form of linear or saturated operations.

•Typical Performance (On Innogration narrow band fixture with device soldered): Pulsed CW, 20uS width, 10% dule cycle

Vds= 50V,IDQ =80mA(Vgs =3.22V)							
Freq (MHz) P1dB(dBm) P1dB(W) P1dB Eff(%) P1dB Gain(dB) P3dB(dBm) P3dB(W) P3dB Eff(%)							
915	49.12	81.59	63.91	22.98	49.78	95.07	63

Features

- · High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

Suitable Applications

- 2-30MHz (HF or Short wave communication)
- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)
- 118 -140MHz (Avionics)

- 136-174MHz (Commercial ground communication)
- 160-230MHz (TV VHF III)
- 30-512MHz (Jammer, Ground/Air communication)
- 470-860MHz (TV UHF)
- 100kHz 1000MHz (ISM, instrumentation)

Table 1. Maximum Ratings

•			
Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	110	Vdc
GateSource Voltage	V _{GS}	-10 to +10	Vdc
Operating Voltage	V _{DD}	+55	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Rejc	1.5	°C/W
T _C = 85°C, T _J =200°C, DC test	Keac	1.5	-0/00

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2

60

-5

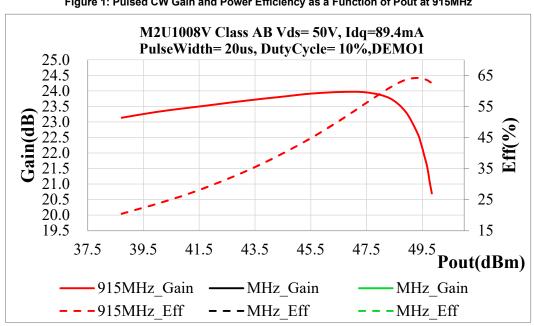
%

dΒ

M2U1008V LDMOS TRANSISTOP

Table 4. Electrical Characteristics (TA = 25 $^{\circ}$ C unless otherwise noted)

Drain Efficiency@Pout

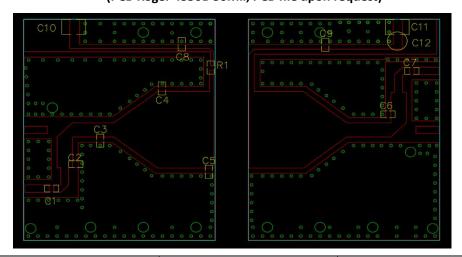

Input Return Loss

Characteristic	Symbol	Min	Тур	Max	Unit
DC Characteristics					
Drain-Source Voltage	V		110		V
V _{GS} =0, I _{DS} =1.0mA	$V_{(BR)DSS}$				
Zero Gate Voltage Drain Leakage Current				1	^
$(V_{DS} = 50V, V_{GS} = 0 V)$	I _{DSS}			1	μΑ
GateSource Leakage Current				4	^
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}			1	μΑ
Gate Threshold Voltage	M. m.		0.70		
$(V_{DS} = 50V, I_D = 600 \mu A)$	V _{GS} (th)		2.73		V
Gate Quiescent Voltage	V		3.22		
$(V_{DD}$ = 50 V, I_{D} = 80 mA, Measured in Functional Test)	$V_{GS(Q)}$		3.22		V
Common Source Input Capacitance	C _{ISS}		57		pF
$(V_{GS} = 0V, V_{DS} = 50 V, f = 1 MHz)$					
Common Source Output Capacitance	Coss		24		pF
$(V_{GS} = 0V, V_{DS} = 50 V, f = 1 MHz)$					
Common Source Feedback Capacitance	C _{RSS}		0.75		pF
$(V_{GS} = 0V, V_{DS} = 50 V, f = 1 MHz)$					
Functional Tests (In Demo Test Fixture, 50 ohm system) V _{DD} = 50 Vd	c, I _{DQ} = 80mA, f =	915 MHz, CW	/ Signal Measu	rements, Pin=	27dBm
Power Gain@Pout	Gp		22		dB
Output Power	Pout		80		W

TYPICAL CHARACTERISTICS

 η_{D} IRL

Figure 1: Pulsed CW Gain and Power Efficiency as a Function of Pout at 915MHz



M2U1008V LDMOS TRANSISTOP

>1 915.00000 MHz -5.5510 dB 20.00 15.00 10.00 5.000 0.000 -10.00 -15.00 -20.00 -25.00 [FZ] S21 Log Mag 20.00 db/ Ref -20.00 db [ER D&M] >1 915.00000 MHz 19.027 dB 60.00 40.00 20.00 -20.00 -40.00 -60.00 -80.00 -100.0 -120.0

Figure 2: Network analyzer output S11/S21

Figure 3. Test Circuit Component Layout (PCB Roger 4350B 30Mil, PCB file upon request)

Component	Value	Quantity
U1	M2U1008V	1
C1、C7、C8、C9	33pF	4
C3、C4、C5	15pF	3
C2	1.5pF	1
C6	10pF	1
C12	470uF/63V	1
C10、C11	10uF	2
R1	10 Ω	1

M2U1008V LDMOS TRANSISTOP

Package Outline

Flanged ceramic package; 2 leads

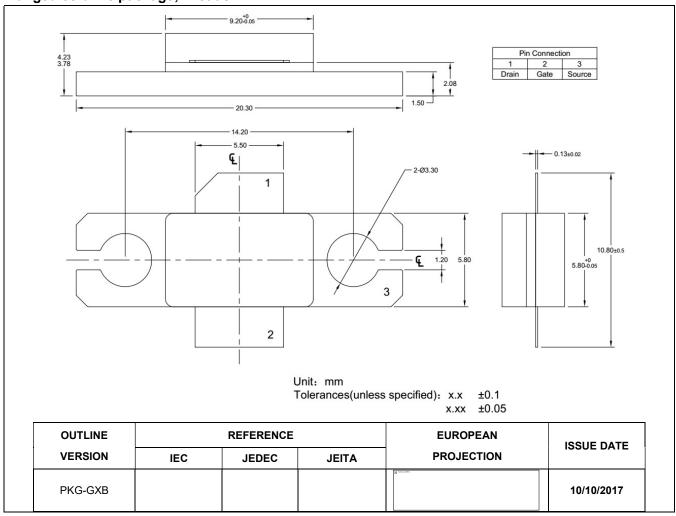


Figure 1. Package Outline PKG-G2E

M2U1008V LDMOS TRANSISTOP

Document Number: M2U1008V Preliminary Datasheet V1.0

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2022/12/5	V1.0	Preliminary Datasheet Creation

Application data based on ZYX-22

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.