Gallium Nitride 50V, 500W, 3.4-3.8GHz RF Power Transistor

Description

The STCV38500BY4V is a 500-watt, internally matched GaN HEMT, designed for 5G cellular applications with frequencies from 3.4-3.8GHz, enabled by wide band VBW capability to support IBW \geq 200MHz.

It can be configured as asymmetrical Doherty for 4G or 5G application, delivering 55 to 70W average power, according to normal 8 to 9dB back off.

There is no guarantee of performance when this part is used in applications designed Outside of these frequencies.

• Typical Doherty Pulsed CW and 1C W--CDMA Characterization Performance:

3.4-3.8GHz full band Doherty VDD = 48 Vdc, IDQA = 280 mA, VGSB = -6 Vdc,

Freq	Pulse (Pulse CW Signal(1)			Pavg=47.5dBm WCDMA Signal(2)			Pavg=48.5dBm WCDMA Signal(2)		
(GHz)	P1dB Gain	Psat	Psat		Eff(%)	ACPR5M		F ff(0/)	ACPR5M	
	(dB)	(dBm)	(W)	Gp (dB)		(dBc)	Gp (dB)	Eff(%)	(dBc)	
3.4	11.55	56.54	450	12.09	45.47	-27.63	11.91	47.66	-27.75	
3.5	12.16	56.73	471	12.35	46.32	-28.85	12.17	48.07	-28.90	
3.6	12.78	56.85	484	12.62	46.05	-32.58	12.44	47.69	-32.71	
3.7	12.49	56.80	479	12.55	44.82	-34.39	12.35	46.74	-34.03	
3.8	12.22	56.44	440	12.04	43.06	-36.84	11.84	45.09	-35.56	

3.4-3.6GHz full band Doherty VDD = 46 Vdc, IDQA = 260 mA, VGSB = -6 Vdc,

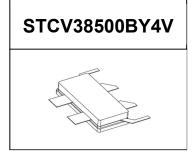
Freq	Pulse (CW Signa	l(1)	Pavg=47.5dBm WCDMA Signal(2)			Pavg=48.5dBm WCDMA Signal(2)		
(GHz)	P1dB Gain	Psat	Psat	Gp (dB)	dB) Eff(%)	ACPR5M	Gp (dB)	Eff(%)	ACPR5M
	(dB)	(dBm)	(W)	Gp (dB)		(dBc)			(dBc)
3.4	12.52	56.44	440	12.18	48.88	-28.35	11.90	51.10	-28.54
3.5	12.60	56.27	423	12.06	49.75	-29.56	11.81	51.84	-29.91
3.6	12.33	56.11	408	11.66	49.20	-32.08	11.48	51.43	-32.30

Notes:

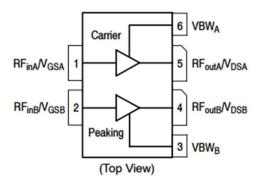
(1) Pulse Width=100 us, Duty cycle=20%

(2) WCDMA signal: 3GPP test model 1; 1 to 64 DPCH; Channel Bandwidth=3.84MHz,PAR =10.5 dB at 0.01 % probability on CCDF. Recommended driver: Class AB 1 stages discrete: STBV38081C6

Applications


- Asymmetrical Doherty amplifier within N78/N77 5G band and B42 4G band
- S band power amplifier

Important Note: Proper Biasing Sequence for GaN HEMT Transistors


Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

- Turning the device OFF
- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Figure 1: Pin Connection definition

Table 1. Maximum Ratings

Symbol	Value	Unit
V _{DSS}	+200	Vdc
V _{GS}	-8 to +0.5	Vdc
V _{DD}	55	Vdc
lgs	22.4	mA
Tstg	-65 to +150	°C
Tc	+150	°C
TJ	+225	°C
	V _{DSS} V _{GS} V _{DD} Igs Tstg T _c	V +200 V _{GS} -8 to +0.5 V _{DD} 55 Igs 22.4 Tstg -65 to +150 T _c +150

Table 2. Thermal Characteristics

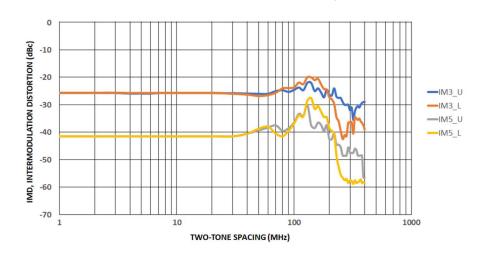
Characteristic	Symbol	Value	Unit	
Thermal Resistance, Junction to Case by FEA	Balo	1 25	°C /W	
T_c = 85°C, Pout=70W, 3.6GHz Doherty application board	Rejc	1.25	-0.700	

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)

DC Characteristics (main path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=21.6mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 21.6mA	V _{GS(th)}	-4		-2	V
Gate Quiescent Voltage VDS =50V, IDS=100mA, Measured in Functional Test		V _{GS(Q)}		-3		V

DC Characteristics (peak path, measured on wafer prior to packaging)


Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=34mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 34mA	V _{GS(th)}	-4		-2	V
Gate Quiescent Voltage VDS =50V, IDS=220mA, Measured in Functional Test		$V_{\text{GS}(\text{Q})}$		-3.15		V

Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	3.6GHz, Pout=70W WCDMA 1 Carrier in Doherty circuit All phase, No device damages	VSWR		10:1		

Document Number: STCV38500BY4V Advanced Datasheet V1.1

Figure 2: Intermodulation Distortion Products versus Two--Tone Spacing Vdd=48V, Pout=47.5dBm, Center Frequency=3.6GHz

3.4-3.8GHz full band tuning

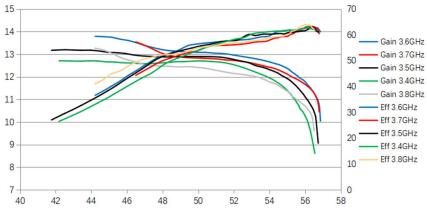


Figure 4: Network analyzer output, S11 and S21 (3.4-3.8GHz Doherty)

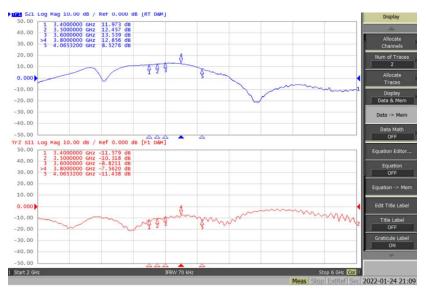


Figure 5: Picture of application board Doherty circuit for 3.4-3.8GHz

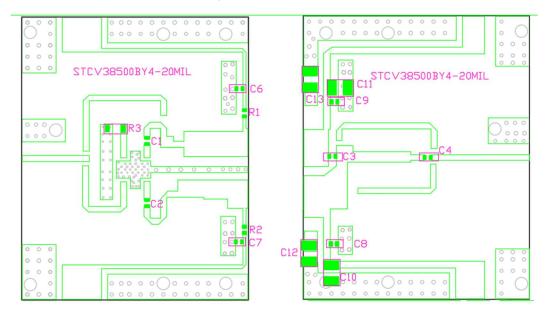
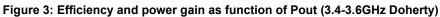
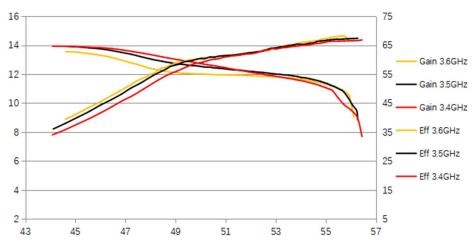
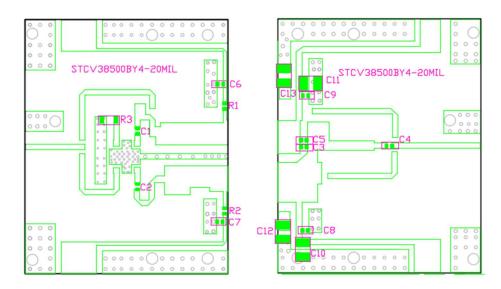




Table 4. Bill of materials of application board (PCB layout upon request, RO4350B 20mils)

Part	Quantity	Description	Part Number	Manufacture
C1,C2,C6,C4	7	8.2pFHigh Q	251SHS8R2BSE	TEMEX
C7,C8,C9		Capacitor		
C3	1	2.0pFHigh Q	ATC600S2R0	ATC
		Capacitor		
C10,C11,C12,C13	4	10uF MLCC	RS80R2A106M	MARUWA
R1,R2	2	10 Ω Power Resistor	ESR03EZPF100	ROHM
R3	1	51 Ω Power Resistor	S1206N	RN2
COUT1	1	3 dB Bridge	XC3500P-03S	ANAREN
T1	1	500W GaN	STCV38500BY4V	Innogration
		Dual Transistor		

3.4-3.6GHz full band tuning



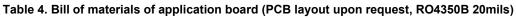
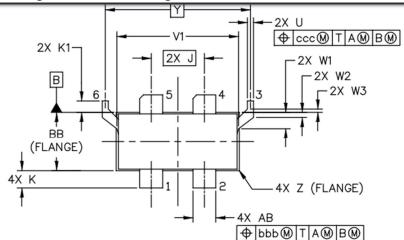
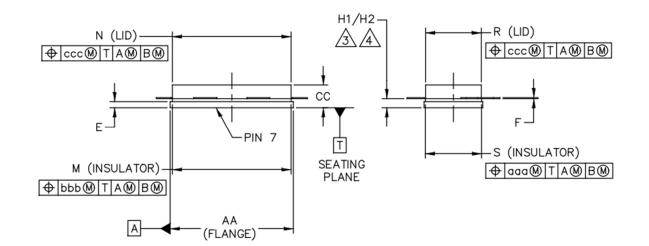


Figure 4: Network analyzer output, S11 and S21 (3.4-3.6Hz Doherty)

Figure 5: Picture of application board Doherty circuit for 3.4-3.6GHz





Part	Quantity	Description	Part Number	Manufacture
C1,C2,C6,C4	7	8.2pFHigh Q	251SHS8R2BSE	TEMEX
C7,C8,C9		Capacitor		
C3,C5	2	1.8pFHigh Q	ATC600S1R8	ATC
		Capacitor		
C10,C11,C12,C13	4	10uF MLCC	RS80R2A106M	MARUWA
R1,R2	2	10 Ω Power Resistor	ESR03EZPF100	ROHM
R3	1	51 Ω Power Resistor	S1206N	RN2
COUT1	1	3 dB Hybrid	XC3500P-03S	ANAREN
T1	1	500W GaN	STCV38500BY4V	Innogration
		Dual Transistor		

Document Number: STCV38500BY4V Advanced Datasheet V1.1

Earless Flanged Ceramic Package; 6 leads- BY4V

	IN	ICH	MILLIN	IETER		IN	СН	MILLIM	ETER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	.805	.815	20.45	20.70	R	.365	.375	9.27	9.53
BB	.380	.390	9.65	9.91	S	.365	.375	9.27	9.53
CC	.125	.170	3.18	4.32	U	.035	.045	0.89	1.14
E	.035	.045	0.89	1.14	V1	.795	.805	20.19	20.45
F	.004	.007	0.10	0.18	W1	.0975	.1175	2.48	2.98
H1	.057	.067	1.45	1.70	W2	.0225	.0425	0.57	1.08
H2	.054	.070	1.37	1.78	W3	.0125	.0325	0.32	0.83
J	.350	BSC	8.89 BSC		Y	.956	BSC	24.28	B BSC
к	.0995	.1295	2.53	3.29	Z	R.000	R.040	R0.00	R1.02
K1	.070	.090	1.78	2.29	AB	.145	.155	3.68	3.94
М	.774	.786	19.66	19.96	aaa	.0	005	0.1	3
Ν	.772	.788	19.61	20.02	bbb	.0)10	0.2	25
					ccc	.0)15	0.3	8

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2022/1/25	V1.0	Preliminary Datasheet Creation
2022/3/10	V1.1	Add 3.4-3.6GHz narrower band app data

Application data based on LWH-22-04/09

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.