Document Number: STAV58050G2 Preliminary Datasheet V1.0

# GaN HEMT 50V, 50W,5.8GHz RF Power Transistor

# **Description**

The STAV58050G2 is a single ended 50watt, GaN HEMT, ideal for ISM applications at 5.8GHz. It can support CW, pulse and linear applications.

There is no guarantee of performance when this part is used outside of stated frequencies.

Typical pulse CW performance across the band with device soldered

VDD = 50 Vdc, Vgs=-2.9V, Idq=100mA Tc=25°C, air cooling

#### Pulsed CW:

| Freq  | P1dB  | P1dB | P1dB   | P1dB     | P3dB  | P3dB | P3dB   |
|-------|-------|------|--------|----------|-------|------|--------|
| (MHz) | (dBm) | (W)  | Eff(%) | Gain(dB) | (dBm) | (W)  | Eff(%) |
| 5800  | 46.47 | 44.3 | 50.7   | 15.57    | 47.81 | 60.4 | 54.5   |

#### CW:

| Freq(MHz) | Pin(dBm) | Psat(dBm) | Psat(W) | IDS(A) | Gain(dB) | Eff(%) |
|-----------|----------|-----------|---------|--------|----------|--------|
| 5800      | 34.7     | 47.5      | 56      | 2.15   | 12.7     | 52.    |

# **Applications**

- C band Class AB power amplifier
- 5.8GHz RF Energy

## **Important Note: Proper Biasing Sequence for GaN HEMT Transistors**

#### **Turning the device ON**

- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

#### Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

### **Table 1. Maximum Ratings**

| Rating                         | Symbol           | Value       | Unit |
|--------------------------------|------------------|-------------|------|
| DrainSource Voltage            | V <sub>DSS</sub> | +200        | Vdc  |
| GateSource Voltage             | V <sub>GS</sub>  | -8 to +0.5  | Vdc  |
| Operating Voltage              | V <sub>DD</sub>  | 55          | Vdc  |
| Maximum gate current           | lgs              | 8           | mA   |
| Storage Temperature Range      | Tstg             | -65 to +150 | °C   |
| Case Operating Temperature     | T <sub>C</sub>   | +150        | °C   |
| Operating Junction Temperature | TJ               | +225        | °C   |

#### **Table 2. Thermal Characteristics**

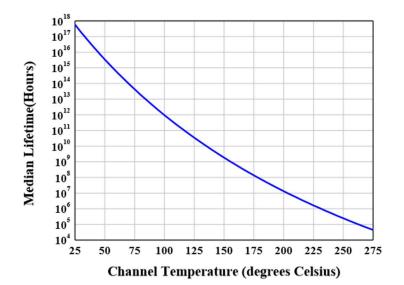
| Characteristic                              | Symbol | Value | Unit  |
|---------------------------------------------|--------|-------|-------|
| Thermal Resistance, Junction to Case by FEA | Rejc   | TDD   | 00 00 |
| T <sub>C</sub> = 85°C, at Pd=50W CW         | KejC   | TBD   | °C /W |

STAV58050G2



Document Number: STAV58050G2 Preliminary Datasheet V1.0

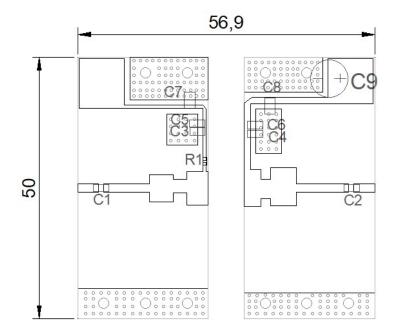
### Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)


### DC Characteristics (measured on wafer prior to packaging)

| Characteristic                                  | ristic Conditions                                   |                  | Min | Тур  | Max | Unit |
|-------------------------------------------------|-----------------------------------------------------|------------------|-----|------|-----|------|
| Drain-Source Breakdown Voltage VGS=-8V; IDS=8mA |                                                     | V <sub>DSS</sub> |     | 200  |     | V    |
| Gate Threshold Voltage VDS =10V, ID = 8mA       |                                                     | $V_{GS(th)}$     | -4  |      | -2  | V    |
| Gate Quiescent Voltage                          | VDS =50V, IDS=100mA,<br>Measured in Functional Test | $V_{GS(Q)}$      |     | -2.9 |     | V    |

### **Ruggedness Characteristics**

| Characteristic           | Conditions                | Symbol | Min | Тур  | Max | Unit |
|--------------------------|---------------------------|--------|-----|------|-----|------|
| Load mismatch capability | 5.8GHz, Pout=50W pulse CW |        |     |      |     |      |
|                          | All phase,                | VSWR   |     | 10:1 |     |      |
|                          | No device damages         |        |     |      |     |      |


Figure 2: Median Lifetime vs. Channel Temperature



Document Number: STAV58050G2 Preliminary Datasheet V1.0

# Reference Circuit of Test Fixture Assembly Diagram

DXF file upon request



| Component   | Description                                                                         | Suggested         |
|-------------|-------------------------------------------------------------------------------------|-------------------|
|             |                                                                                     | Manufacturer      |
| C1、C2、C3、C4 | 3.9pF                                                                               | ATC600F           |
| C5、C6       | 100pF                                                                               | ATC600F           |
| C7、C8       | Ceramic multilayer capacitor, 10uF, 100V                                            | 10uF/100V         |
| C9          | 470UF                                                                               | 63V/470UF         |
| R1          | Chip Resistor,16 Ω,0603                                                             |                   |
| PCB         | PC-board material: Rogers 4350B, $\varepsilon_r$ = 3.48, thickness 30 mils, 1oz cop | pper on each side |

Document Number: STAV58050G2 Preliminary Datasheet V1.0

Figure 3: Efficiency and power gain as function of Pout

(VDD = 50 Vdc, IDQ = 100mA, Pulse width=20us, duty cycle=10%, 5.8GHz)

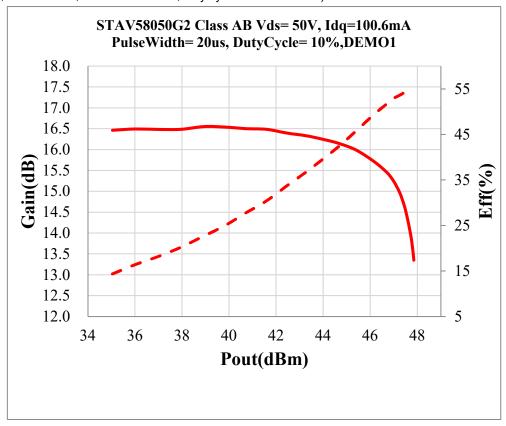
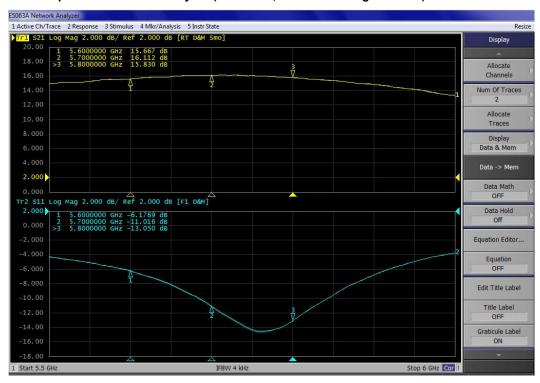




Figure 4: S11/S21 output from Network analyser (VDS= 50V, IDQ=100 mA Vgs =-3.08V)





Document Number: STAV58050G2 Preliminary Datasheet V1.0

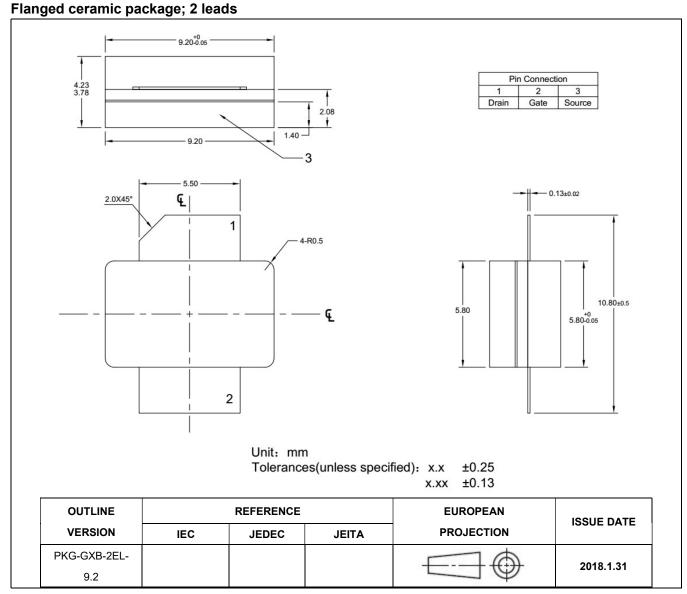



Figure 2. Package Outline PKG-G2



Document Number: STAV58050G2 Preliminary Datasheet V1.0

# **Revision history**

#### **Table 4. Document revision history**

| Date     | Revision | Datasheet Status               |
|----------|----------|--------------------------------|
| 2022/3/4 | V1.0     | Preliminary Datasheet Creation |
|          |          |                                |
|          |          |                                |

Application data based on: YHG-22-05

#### **Notice**

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.