Innogration (Suzhou) Co., Ltd.

700MHz-1000MHz, 200W, 28V High Power RF LDMOS FETs

Description

The ITCH09200B2-R1 is a 200-watt, internally matched LDMOS FET, designed for CDMA/WCDMA and multicarrier GSM base station applications with frequencies from 700 to 1000 MHz. It Can be used in Class AB/B and Class C for all typical cellular base station modulation formats.

Due to internal connections at input and output, it must be used as single-ended configuration.

•Typical Single-Carrier W-CDMA Performance: VDD=28Volts, IDQ= 1000 mA,

 P_{out} = 40 Watts Avg., IQ Magnitude Clipping, Channel Bandwidth = 3.84 MHz, Input Signal PAR = 7.5 dB @ 0.01% Probability on CCDF.

Frequency	Gp (dB)	η (%)	ACPR _{5M} (dBc)	ACPR _{10M} (dBc)
920 MHz	19.9	26.4	-38.5	-55.4
960 MHz	20.3	28.8	-39.2	-56.4
875 MHz	19.7	26.5	-39	-55

•Typical Performance (On Innogration fixture with device soldered):

 V_{DD} = 28 Volts, I_{DQ} = 1000 mA, Pulse CW, Pulse Width=100 us, Duty cycle=10% .

Frequency	Gp (dB)	P _{-1dB} (dBm)	η _D @P ₋₁ (%)	P _{-3dB} (dBm)	η _D @Ρ ₋₃ (%)
920 MHz	20.1	53.3	54	54.4	59.8
960 MHz	20.4	52.5	57.8	53.6	64.7
875 MHz	21.6	53.1	57.6	54.3	66.7

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Internally Matched for Ease of Use
- Excellent thermal stability, low HCI drift

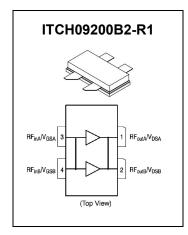

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Compliant to Restriction of Hazardous Substances
 (RoHS) Directive 2002/95/EC

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	70	Vdc
GateSource Voltage	V _{GS}	-10 to +10	Vdc
Operating Voltage	V _{DD}	+32	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Rejc	0.25	°C/W
T_c = 85°C, T_J =200°C, DC test	KAIC	0.35	°C/W

Innogration (Suzhou) Co., Ltd.

1 dB Compression Point

3dB Compression Point

VSWR 10:1 at 200W pulse CW Output Power

Input Return Loss

Document Number: ITCH09200B2-R1 Product Datasheet V1.1

Table 3. ESD Protection Characteristics						
Test Methodology	Class					
Human Body Model (per JESD22A114)			Class 2			
Currical Characteristics (TA = 25 C unless otherwise)	e noted)					
Characteristic	Symbol	Min	Тур	Max	Unit	
OC Characteristics						
Drain-Source Breakdown Voltage	V _{DSS}	65			v	
(V _{GS} =0V; I _D =100uA)	V DSS	05			v	
Zero Gate Voltage Drain Leakage Current				1	μA	
(V _{DS} = 28 V, V _{GS} = 0 V)	I _{DSS}			1	μΛ	
GateSource Leakage Current				1		
$(V_{GS} = 6 V, V_{DS} = 0 V)$	I _{GSS}			I	μΑ	
Gate Threshold Voltage			2.2		v	
(V _{DS} = 28V, I _D = 1 mA)	V _{GS} (th)		2.2		v	
Gate Quiescent Voltage	V	2.6	3.1	3.6	V	
(V_{DD} = 28 V, I_{DQ} = 1000 mA, Measured in Functional Test)	$V_{GS(Q)}$				v	
unctional Tests (In Innogration Test Fixture, 50 ohm system) :V_{\tt DC}	= 28 Vdc, I _{DQ} = 10	000 mA, f = 920	0 MHz, Pulse 0	CW Signal Mea	surements	
Pulse Width=100 μs, Duty cycle=10%)						
Power Gain	Gp		20.1		dB	
Drain Efficiency@P3dB	η _D		59.8		%	

 $P_{\text{-1dB}}$

 $P_{\text{-}3dB}$

IRL

No Device Degradation

Load Mismatch (In Innogration Test Fixture, 50 ohm system): V_{DD} = 28 Vdc, I_{DQ} = 1000 mA, f = 920 MHz

53.3

54.4

-7

dBm

dBm

dB

2 / 6

Innogration (Suzhou) Co., Ltd.

Reference Circuit of Test Fixture Assembly Diagram

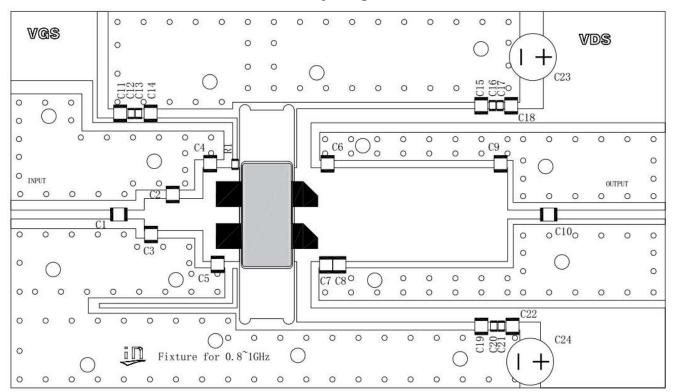
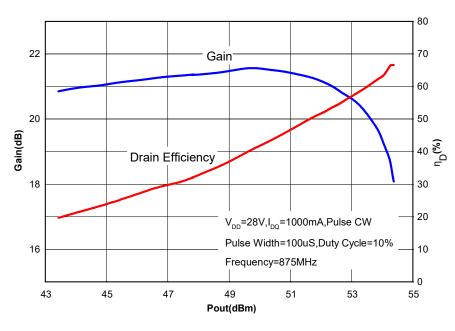
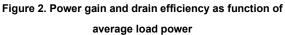
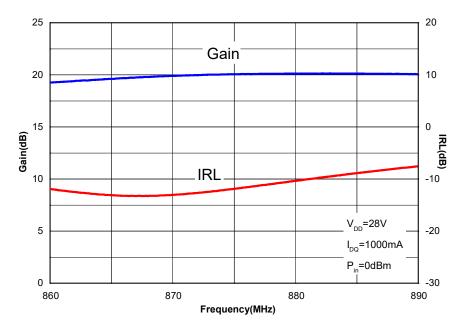
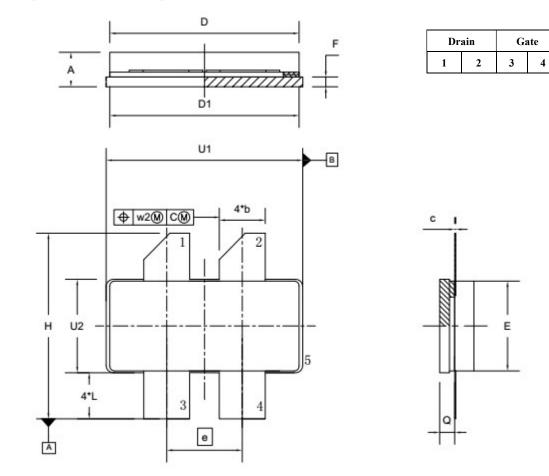




Figure 1. ITCH09200B2-R1 Test Circuit Component Layout(870MHz~880MHz)

Component	Description	Suggested Manufacturer	P/N		
C1,C10,C14,C15,C19	Ceramic Capacitor,47pF	Ceramic Capacitor,47pF ATC			
C2,C4,C5,C6	Ceramic Capacitor,9.1pF	ATC	800B 9R1		
C3	Ceramic Capacitor,1.8pF	ATC	800B 1R8		
C7,C8	Ceramic Capacitor,3.9pF	ATC	800B 3R9		
C9	Ceramic Capacitor,2.7pF	ATC	800B 2R7		
C13,C16,C20	Capacitor,1000pF	Murata	GRM21BR71H102		
C12,C17,C21	Capacitor,0.1uF	Murata	GRM21BR71H104		
C11,C18,C22	Capacitor,10uF	Murata	GRM32DF51H106		
C23,C24	Electrolytic Capacitor ,470uF,63V	Vishay	MAL203858471E3		
R1	Chip Resistor,10 Ω	Digi-Key	P10ECT-ND		
PCB	0.76mm [0.030''] thick, εr=3.48, Rogers RO4350, 1 oz. copper				

TYPICAL CHARACTERISTICS




Figure 3. Broadband Frequency Response

Source

5

Package Outline

Earless Flanged Ceramic Package; 4 leads

0 5 10 mm LIIIIIIII scale

UNIT	A	b	с	D	D ₁	e	E	F	н	L	Q	U1	U ₂	W1	W ₂
	4.72	4.93	0.15	20.02	19.96	7.00	9.50	1.14	19.94	5.33	1.70	20.70	9.91	0.25	0.51
mm	3.43	4.67	0.08	19.61	19.66	7.90	9.30	0.89	18.92	4.32	1.45	20.45	9.65	0.25	0.51
inches	0.186	0.194	0.006	0.788	0.786	0.311	0.374	0.045	0.785	0.210	0.067	0.815	0.390	0.01	0.02
menes	0.135	0.184	0.003	0.772	0.774	0.311	0.366	0.035	0.745	0.170	0.057	0.805	0.380	0.01	0.02

OUTLINE		REFERENCE		EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
PKG-B2-R1				$\bigcirc \bigcirc$	03/12/2013

Revision history

Table 6. Document revision history

Date	Revision	Datasheet Status
2017/12/01	Rev 1.0	Product Datasheet
2022/4/2	Rev 1.1	From ITBH09200B2, changed package to B4 from B2

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.