Innogration (Suzhou) Co., Ltd.

Document Number: ITCH09045A2 Product Datasheet V1.0

700-1000MHz, 45W, 28V High Power RF LDMOS FE

Description

The ITCH09045A2 is a 45-watt, input-matched LDMOS FETs, designed for cellular and communication/ISM applications with frequencies from 700 MHz to 1000 MHz. It can be used in Class AB/B and Class C for all typical modulation formats.

ITCH09045A2

ITCH09045A2E

 $\bullet \textbf{Typical Performance (On Test Fixture with device soldered):} \\$

VDD = 28 Volts, I_{DQ} = 200 mA, Pulse CW, Pulse Width=20 us, Duty cycle=10%

	V _{ds} = 28V, I _{DQ} =200mA(V _{gs} =3.0V)						
Freq (MHz)	P1dB(dBm)	P1dB(W)	P1dB Eff(%)	P1dB Gain(dB)	P3dB(dBm)	P3dB(W)	P3dB Eff(%)
758	47.57	57.2	58.1	20.08	48.21	66.3	61.1
780	46.72	47.0	59.6	20.22	47.72	59.1	65.5
803	45.62	36.5	57.7	19.27	46.94	49.4	63.7

Features

- · High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Internally Matched for Ease of Use
- · Excellent thermal stability, low HCI drift

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- · Pb-free, RoHS-compliant

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	65	Vdc
GateSource Voltage	V _{GS}	-10 to +10	Vdc
Operating Voltage	V_{DD}	+32	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	-55~+150	°C
Operating Junction Temperature	T٦	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Dolla	4.7	00/11/
T _C = 87°C, T _J =175°C, DC test	Rejc	1.7	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class		
Human Body Model (per JESD22A114)	Class 2		

Innogration (Suzhou) Co., Ltd.

Document Number: ITCH09045A2 Product Datasheet V1.0

Table 4. Electrical Characteristics (TA = 25 ℃ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
DC Characteristics					
Zero Gate Voltage Drain Leakage Current				400	^
$(V_{DS} = 65V, V_{GS} = 0 V)$	I _{DSS}			100	μΑ
Zero Gate Voltage Drain Leakage Current				1	^
$(V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V})$	I _{DSS}			I	μА
GateSource Leakage Current				1	^
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}			l I	μА
Gate Threshold Voltage	\/ (41-)		2.0		V
$(V_{DS} = 28V, I_D = 450 \mu A)$	V _{GS} (th)		2.0		V
Gate Quiescent Voltage	$V_{GS(Q)}$		3		V
(V_{DD} = 28 V, I_{D} = 200 mA, Measured in Functional Test)	V _{GS(Q)}		3		V
Functional Tests (In Innogration Test Fixture, 50 ohm system) V _{DD} = 28 Vdc, I _{DQ} = 200 mA, f =758 MHz, CW Signal Measurements.					

Power Gain @ P _{1dB}	Gp	20	dB
1 dB Compression Point	P _{-1dB}	45	W
Drain Efficiency@P _{1dB}	η₀	55	%
Input Return Loss	IRL	-7	dB

Load Mismatch (In Innogration Test Fixture, 50 ohm system): V_{DD} = 28 Vdc, I_{DQ} = 200 mA, f = 758 MHz

	VSWR 10:1 at 80W pulse CW Output Power	No Device Degradation	
--	--	-----------------------	--

TYPICAL CHARACTERISTICS

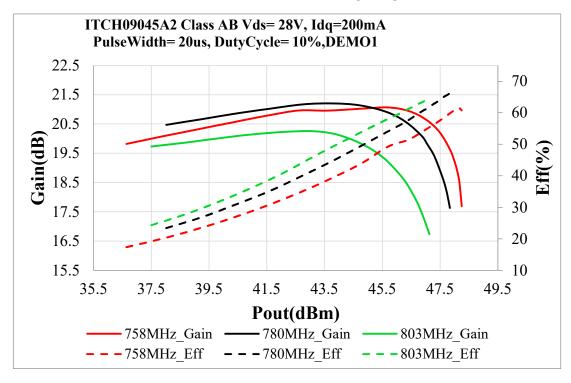


Figure 2. Power Gain and Drain Efficiency as function of Power Out

Innogration (Suzhou) Co., Ltd.

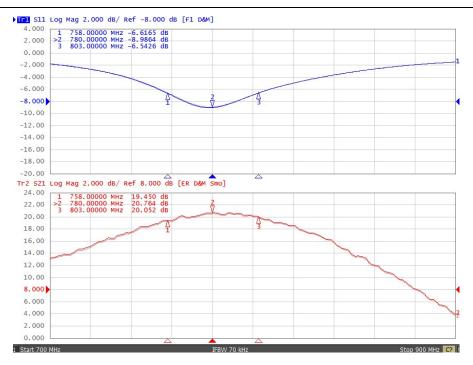
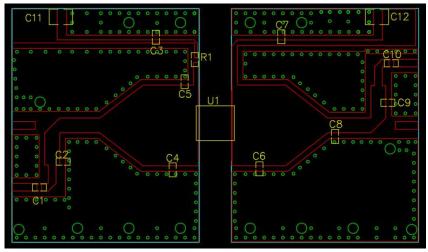



Figure 3. S11 and S21 of Network analyzer output

Reference Circuit of Test Fixture Assembly Diagram

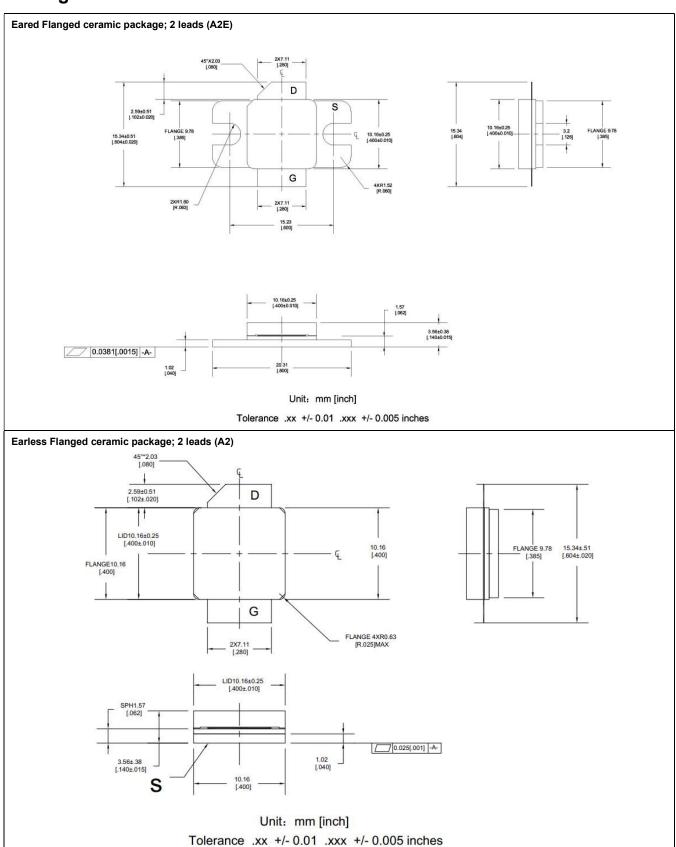


Table 5. Test Circuit Component Designations and Values

Component	Value	Quantity
C1、C3、C7、C10	33pF	4
C6、C8	15pF	2
C2	4.7pF	1
C4	20pF	1
C5	8.2pF	1
C9	6.8pF	1
C11、C12	10nF	2
R1	10 Ω	1

Package Outline

Document Number: ITCH09045A2 Product Datasheet V1.0

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2022/4/6	Rev 1.0	Product Datasheet

Application data based on ZXY-22-03

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.