

# 80W, 28V High Power RF LDMOS FETs

## **Description**

The ITCH09080GX is a 80-watt, unmatched LDMOS FETs, designed for Wide-band and Mobile radio applications with frequencies from HF to 1500MHz. It can be used in Class AB/B and Class C for all typical modulation formats.

•Typical Class AB Performance (On Innogration fixture with device soldered): VDD = 28 Volts, Vgs=3.02V, IDQ = 450 mA, Pulse CW, Pulse Width =20us, Duty Cycle =10%.

| Frequency | Gain (dB) | P <sub>-1dB</sub> (W) | η <sub>D</sub> @P <sub>-1</sub> (%) | P <sub>-3dB</sub> (W) | η <sub>D</sub> @P <sub>-3</sub> (%) |
|-----------|-----------|-----------------------|-------------------------------------|-----------------------|-------------------------------------|
| 880MHz    | 20        | 80                    | 52                                  | 120                   | 61                                  |

# ITCH09080GX

#### **Features**

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- · Internally Matched for Ease of Use
- Excellent thermal stability, low HCI drift

- Large Positive and Negativ for Improved Class C Operation
- Pb-free, RoHS-compliant

### **Table 1. Maximum Ratings**

| Rating                         | Symbol           | Value       | Unit |
|--------------------------------|------------------|-------------|------|
| DrainSource Voltage            | V <sub>DSS</sub> | +70         | Vdc  |
| GateSource Voltage             | $V_{gs}$         | -10 to +10  | Vdc  |
| Operating Voltage              | V <sub>DD</sub>  | +32         | Vdc  |
| Storage Temperature Range      | Tstg             | -65 to +150 | °C   |
| Case Operating Temperature     | T <sub>c</sub>   | +150        | °C   |
| Operating Junction Temperature | T,               | +225        | °C   |

### **Table 2. Thermal Characteristics**

| Characteristic                                        | Symbol | Value | Unit |
|-------------------------------------------------------|--------|-------|------|
| Thermal Resistance, Junction to Case                  | Do 10  | 0.76  | 0000 |
| T <sub>C</sub> = 85°C, T <sub>J</sub> =200°C, DC test | Rejc   | 0.76  | °C/W |

#### **Table 3. ESD Protection Characteristics**

| Test Methodology                  | Class   |  |  |
|-----------------------------------|---------|--|--|
| Human Body Model (per JESD22A114) | Class 2 |  |  |

# **Table 4. Electrical Characteristics** (TA = 25 $^{\circ}$ C unless otherwise noted)

| Characteristic                                  | Symbol                                | Min | Тур | Max | Unit |
|-------------------------------------------------|---------------------------------------|-----|-----|-----|------|
| DC Characteristics                              |                                       |     |     |     |      |
| Drain-Source Voltage                            | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 70  |     |     | V    |
| V <sub>GS</sub> =0, I <sub>DS</sub> =1.0mA      | $V_{(BR)DSS}$                         | 70  |     |     | V    |
| Zero Gate Voltage Drain Leakage Current         |                                       |     |     | 10  |      |
| $(V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V})$ | I <sub>DSS</sub>                      |     |     | 10  | μΑ   |
| GateSource Leakage Current                      |                                       |     |     | 4   | Δ.   |
| $(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$ | I <sub>GSS</sub>                      |     |     | I   | μΑ   |



Document Number: ITCH09080GX Product Datasheet V1.0

| Gate Threshold Voltage                                                              | $V_{GS}(th)$          |           | 1.6 |           | V |
|-------------------------------------------------------------------------------------|-----------------------|-----------|-----|-----------|---|
| $(V_{DS} = 28V, I_D = 300 \mu A)$                                                   | V <sub>GS</sub> (III) |           | 1.0 |           | V |
| Gate Quiescent Voltage                                                              | V                     |           | 3.0 |           | V |
| $(V_{DD} = 28 \text{ V}, I_D = 450 \text{ mA}, \text{Measured in Functional Test})$ | V <sub>GS(Q)</sub>    | <u>——</u> | 3.0 | <u>——</u> | V |

Functional Tests (In Demo Test Fixture, 50 ohm system) V<sub>DD</sub> = 28 Vdc, I<sub>DQ</sub> = 450mA, f = 880 MHz, Pulse Width =20us, Duty Cycle =10%...

| Power Gain             | Gp                            | <br>19 |             | dB |
|------------------------|-------------------------------|--------|-------------|----|
| Drain Efficiency@P3dB  | $\eta_{\scriptscriptstyle D}$ | <br>52 | <del></del> | %  |
| 3 dB Compression Point | P <sub>-1dB</sub>             | <br>80 |             | W  |
| Input Return Loss      | IRL                           | <br>-7 |             | dB |

Load Mismatch (In Innogration Test Fixture, 50 ohm system):  $V_{DD} = 28 \text{ Vdc}$ ,  $I_{DQ} = 450 \text{ mA}$ , f = 870 MHz

VSWR 10:1 at 80W pulse CW Output Power No Device Degradation

Figure 1: Pulsed CW performance (VDS = 28 Volts, Vgs=3.02V, IDQ = 450 mA, Pulse CW, Pulse Width =20us, Duty Cycle =10%.)

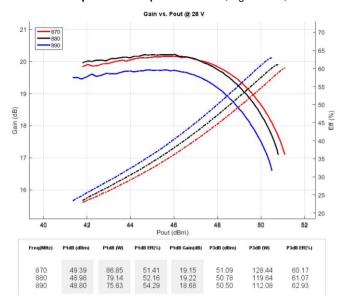



Figure 2:Network Analyzer Results (S11, S21) (VDS=28V, Idq=800mA)

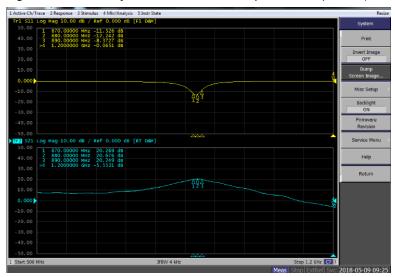





Figure 4: WCDMA ACPR performance (VDS=28V, Idq=800mA, Single Carrier W-CDMA, PAR=10.8Db@0.01% Probability on CCDF.)

IM5(dBc) VS 2 tones average power(W)

IM3(dBc) VS 2 tones average power(W)

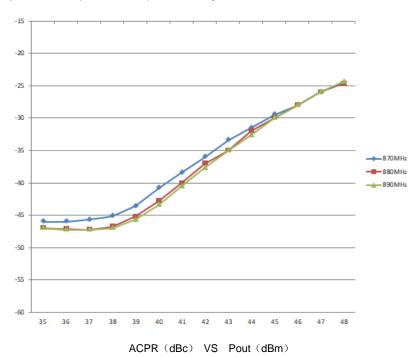





Figure 5: Photo of 880MHz application circuit

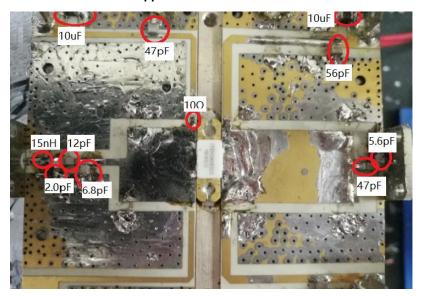
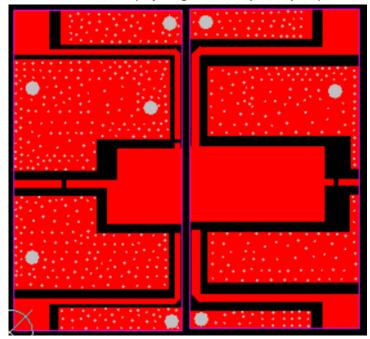




Figure 6 PCB:RO4350 30Mil (Layout gerber file upon request):



# **Package Outline**

# Flanged ceramic package; 2 leads

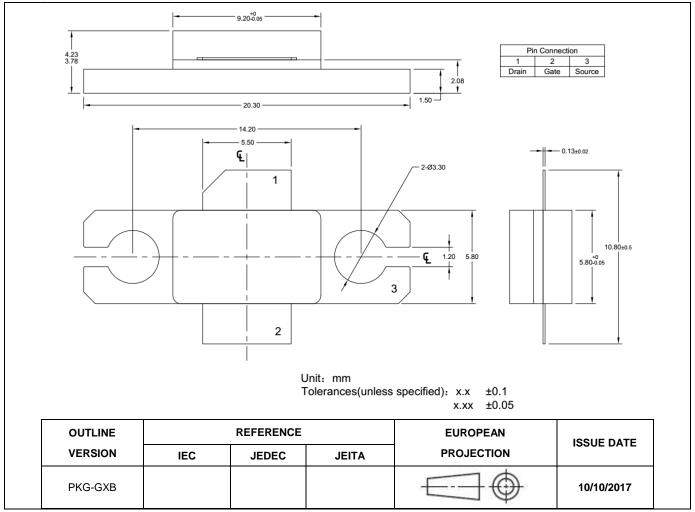



Figure 1. Package Outline PKG-G2E



Document Number: ITCH09080GX Product Datasheet V1.0

## **Revision history**

### Table 5. Document revision history

| Date      | Revision | Datasheet Status  |
|-----------|----------|-------------------|
| 2018/5/10 | Rev 1.0  | Product Datasheet |
|           |          |                   |
|           |          |                   |

#### **Disclaimers**

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.