30W, HF-1.5GHz 50V High Power RF LDMOS

Description

The MV1503V is a 30W single ended 50V LDMOS, unmatched for any applications within HF-1.5GHz

It supports CW, and pulsed and any modulated signal at either saturated or linear application.

It can be the drop-in replacement of its equivalent 30W single ended VDMOS like MRF148A with higher efficiency, improved thermal performance and stability,

•Typical Performance (On Innogration narrow band fixture with device soldered):

 V_{DD} = 50 Volts, I_{DQ} = 100 mA, CW.

	,	,	
Frequency	Gp (dB)	P _{out} (W)	η _D @P _{out} (%)
162.5MHz	28	39	70

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

Suitable Applications

- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)
- 160-230MHz (TV VHF III)
- 136-174MHz (Commercial ground communication)
- Laser Exciter
- Synchrotron
- MRI
- Plasma generator
- · Weather Radar

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	120	Vdc
GateSource Voltage	V _{GS}	-10 to +10	Vdc
Operating Voltage	V _{DD}	+55	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	T₃	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Doug	0.05	00/11/
T _C = 85°C, T _J =200°C, DC test	R⊕JC	0.95	°C/W

Table 3. ESD Protection Characteristics

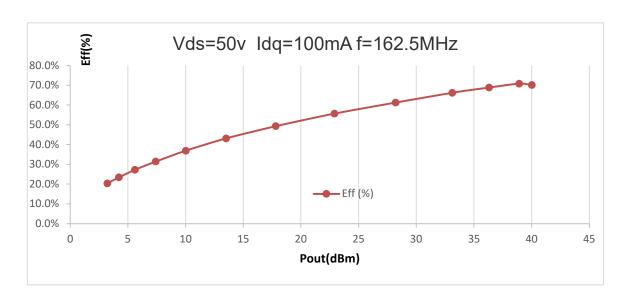
Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2

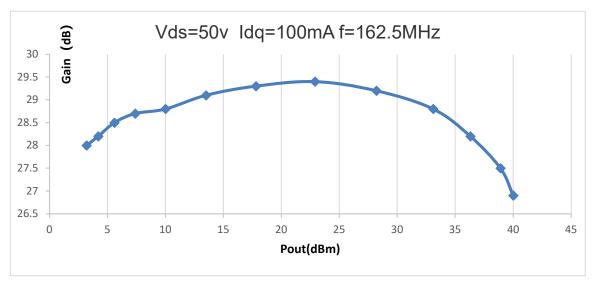
MV1503V

MV1503V LDMOS TRANSISTOR

Table 4. Electrical Characteristics (TA = 25 $^{\circ}$ C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
DC Characteristics					
Drain-Source Voltage	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V	400		V
V_{GS} =0, I_{DS} =1.0mA	$V_{(BR)DSS}$		120		
Zero Gate Voltage Drain Leakage Current				4	
$(V_{DS} = 50V, V_{GS} = 0 V)$	I _{DSS}			1	μΑ
GateSource Leakage Current				1	
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}				μΑ
Gate Threshold Voltage	V (II)		2.73		V
$(V_{DS} = 50V, I_D = 600 \mu A)$	V _{GS} (th)				
Gate Quiescent Voltage	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		3.57		
(V_{DD} = 50 V, I_{D} = 100 mA, Measured in Functional Test)	$V_{GS(Q)}$				V
Common Source Input Capacitance	C _{ISS}		28.3		pF
$(V_{GS} = 0V, V_{DS} = 50 V, f = 1 MHz)$					
Common Source Output Capacitance	Coss		11.9		pF
$(V_{GS} = 0V, V_{DS} = 50 V, f = 1 MHz)$					
Common Source Feedback Capacitance	C _{RSS}		0.38		pF
$(V_{GS} = 0V, V_{DS} = 50 V, f = 1 MHz)$					
Functional Tests (In Demo Test Fixture, 50 ohm system) V _{DD} = 50 Vd	c, I _{DQ} = 100mA, f	= 915 MHz, C	W Signal Meas	surements, Pin	=21.5dBm
Power Gain@Pout	Gp		24		dB
			İ		

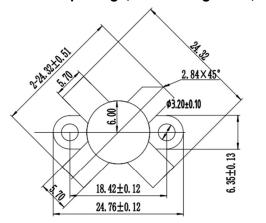

Power Gain@Pout	Gp		24	 dB
Output Power	Pout	30	36	W
Drain Efficiency@Pout	η _D		60	 %
Input Return Loss	IRL		-7	 dB

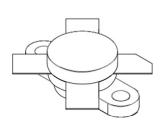

MV1503V LDMOS TRANSISTOR

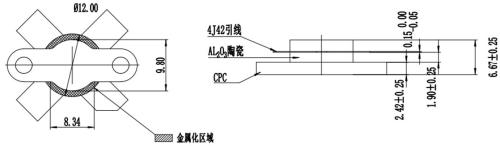
TYPICAL CHARACTERISTICS

Figure 1: Pulsed CW Gain and Power Efficiency as a Function of Pout at 162.5MHz

Signal: CW Vgs=3.72V, Vds=50V, Idq=100mA






MV1503V LDMOS TRANSISTOR

Package Outline

Flanged ceramic package; 2 mounting holes; 2 leads (1—Gate, 2—Drain, 3—Source)

- 技术要求:
- 1. 未注尺寸公差±0.15;
- 2. 全镀金: 外底面、内腔以及引线中心Ni:2.54-11.43 μm, 金2.54-4 μm;
- 3. 图示阴影部分为金属化区。
- 4. 单位:mm.

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status	
2021/6/24	Rev 1.0	Preliminary datasheet	
2022/5/24	Rev 1.1	Modification of V4E package picture and drawing	
2023/11/21	Rev 2.0	Modify drawing of extended leads length	

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.