

3.7-4.1GHz, 70W, 50V GaN matched PA Module

Description

The SMAV3741-70 is a 70-watt, integrated 2-stage Power Amplifier Module, designed for 5G massive MIMO applications, with frequencies up to 4.1 GHz. The module is 50 Ω input fully matched and output partially matched, and requires minimal external components. The module offers a much smaller footprint than traditional discrete component solutions, with much less sensitivity for production, housed in 10*6mm cost effective plastic open cavity package, and heat dissipated by copper flange.

Other Doherty reference design: 3.6-4GHz 70W @50V ,3.4-4GHz 60W @46V

•Typical Performance of Doherty Demo (On Innogration **3.7-4.1GH**z fixture with device soldered with grounding vias): VDS= **50**V, IDQ-main=62mA Vgs-main=-2.97V. Vgs-peak=-4.9V, Idq-driver=12mA, Vgs-Driver=-2.76V

Frog	Pulse CW Signal(1)				Pavg=40.5dBm WCDMA Signal(2)		
Freq (GHz)	P1dB (dBm)	Gp@ P1dB (dB)	P3dB (W)	η _D @P3dB (%)	Gp (dB)	η _□ (%)	ACPR5M (dBc)
3.7	47.30	28.12	78.16	60.08	27.96	43.51	-28.78
3.8	46.82	28.57	75.16	61.83	28.47	44.90	-29.85
3.9	46.44	29.05	72.77	62.55	28.72	44.84	-31.78
4.0	43.61	29.22	68.39	62.44	28.35	43.54	-33.59
4.1	40.98	28.68	71.94	65.07	27.74	43.40	-29.96

•Typical Performance of Doherty Demo (On Innogration **3.6-4.0GH**z fixture with device soldered with grounding vias): VDS= **50**V, IDQ-main=62mA Vgs-main=-2.97V. Vgs-peak=-4.9V, Idq-driver=12mA, Vgs-Driver=-2.76V

Freq	Pulse CW Signal(1)				Pavg=	40.5dBm V	VCDMA Signal(2)
(GHz)	P1dB	Gp@ P1dB	P3dB	η _D @P3dB	Gp (dB)	η _D	ACPR5M (dBc)
(GHZ)	(dBm)	(dB)	(W)	(%)	Эр (ав)	(%)	ACFRSW (dbc)
3.6	47.17	48.83	76.50	57.62	27.74	44.44	-30
3.8	46.81	48.51	71.01	60.96	27.76	44.77	-31
4.0	47.78	48.52	71.16	62.82	27.57	43.31	-33

•Typical Performance of Doherty Demo (On Innogration **3.4-4.0GH**z fixture with device soldered with grounding vias): VDS= **46**V, IDQ-main=46mA Vgs-main=-2.99V. Vgs-peak=-4.7V, Idq-driver=15mA, Vgs-Driver=-2.87V

Freq	Puls	se CW Signa	l(1)	Pavg	Pavg=39dBm WCDMA Signal(2)		
(GHz)	P1-Gain	P3	P3	Cn (dP)	22 (0/)	ACPR5M (dBc)	
(GHZ)	(dB)	(dBm)	(W)	Gp (dB)	η _D (%)	ACPROIVI (dbc)	
3.4	29.18	48.50	70.80	29.31	41.09	-29.18	
3.6	28.92	48.22	66.40	29.50	41.61	-31.82	
3.8	30.73	47.75	59.60	30.84	44.45	-30.66	
4.0	28.46	48.10	64.60	28.55	40.67	-31.50	

Notes:

- (1) Pulse Width=100 us, Duty cycle=20%
- (2) WCDMA signal: 3GPP test model 1; 1 to 64 DPCH; Channel Bandwidth=3.84MHz,PAR =10.5 dB at 0.01 % probability on CCDF.

Document Number: SMAV3741-70 Preliminary Datasheet V1.2

Features and Benefits

- · Adjustable drain bias to fit different power demand
- Extremely good VBW performance to enable the broadest IBW/OBW
- Industry leading RF performance for 5G MIMO AAU, for instance
- ✓ 64T:320 to 400W / 200MHz
- √ 32T:160W to 200W / 200MHz
- Plastic open cavity without molding compound brings advantage compared to molded design
- ✓ Minimize the risk of high density thermal distribution in fanless system for longer life time
- ✓ Highly consistent RF performance for yield of volume production
- 50 Ω Input matched, output partially matched, effective PCB space smaller than 12*20mm
- Integrated Doherty Final and driver Stage
- 6x10 mm Surface Mount Package, full copper flange underneath for grounding and heat dissipation, much more effective than LGA PCB based design

Pin Configuration and Description

Pin No.	Symbol	Description
6	RF IN	RF Input
1	VDS-driver	Driver stage, Drain Bias
4	VGS-driver	Driver stage, Gate Bias
19,21	RF Out2	RF Output, Main Amplifier
22,24	RF Out1	RF Output, Peaking Amplifier
11	VGS-main	Main Amplifier, Gate Bias
16,17	VDS-main	Main Amplifier, Drain Bias
32	VGS-peak	Peaking Amplifier, Gate Bias
26,27	VDS-Peak	Peaking Amplifier, Drain Bias
3,8-10,14,15,28,29,33-35	NC	No connection
2,5,7,12,13,18,20,23,25,30,31,36	GND	Internal Grounding, recommend connecting to Epad ground
		DC/RF Ground. Must be soldered to EVB ground plane over array of
Package Base	GND	vias for thermal and RF performance. Solder voids under Pkg Base will
		result in excessive junction temperatures causing permanent damage.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	200	Vdc
GateSource Voltage	V _{GS}	-8 to +0.6	Vdc
Operating Voltage	V_{DD}	+60	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C

Document Number: SMAV3741-70 Preliminary Datasheet V1.2

Operating Junction Temperature	T₃	+225	°C
--------------------------------	----	------	----

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance@Average Power, Junction to Case	Rejc	3.7	°C/W
Tcase=+85℃, CW Test, , Pout=11W,	RejC	5.7	-0/00

Notes:

- (1) The thermal resistance is acquired by our company's FEA model, which was calibrated by IR measurement, the value shall be applied to reliability.
- (2) The reference Tcase temperature 85℃ is apply on the backside of package.
- (3) If the device soldering onto the 20mil Rogers PCB with 50×Φ0.4mm via hole beneath the package backside and the reference temperature Tcase (85°C) apply on the groundside of the PCB, the total thermal resistance R θ JC (TBD)°C/W.
- (4) The power dissipation in the table is overall dissipation which include Carrier PA, Peaking PA and driver PA.

Table 3. ESD Protection Characteristics

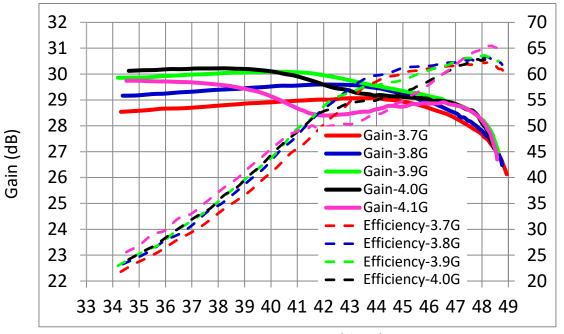
Test Methodology	Class Voltage
Human Body Model(HBM) (JEDEC Standard JESD-A114)	TBD
Charged Device Model (CDM) (JEDEC Standard JESD22-C101F)	±1000V

Table 4. Electrical Characteristics

Parameter	Condition	Min	Тур	Max	Unit
Frequency Range		3.7		4.1	GHz
Driver Quiescent Current (I _{DQ-driver)}			20		mA
Carrier Quiescent Current (I _{DQ-main})			62		mA
Peak PA Gate Quiescent Voltage (V _{PEAK})			-4.9		V
Power Gain @ Pout=40.5dBm	Freq=3.9GHz	28	28.7		dB
Efficiency @Pout=40.5dBm	Freq=3.9GHz	43	44.8		%
Ppeak by CCDF	Freq=3.9GHz		80		W

Load Mismatch of per Section (On Test Fixture, 50 ohm system): f = 3.9GHz

VSWR 10:1 at P3dB pulse CW Output Power	No Device Degradation
---	-----------------------


Efficiency (%)

TYPICAL CHARACTERISTICS

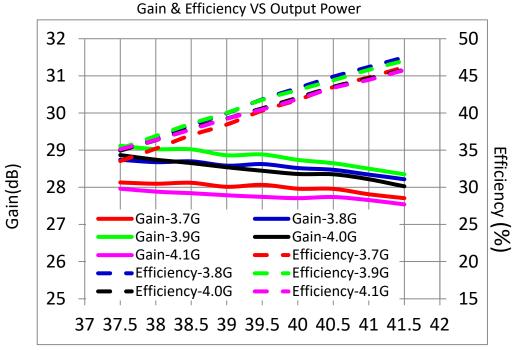

3.7-4.1GHz Doherty @Vds=50V

Figure 1. Power Gain and Drain Efficiency as Function of Pulsed CW Output Power

Output Power (dBm)

Figure 2. 1 Carrier WCDMA RF performance as function of output power

Output Power (dBm)

ACPR VS Output Power

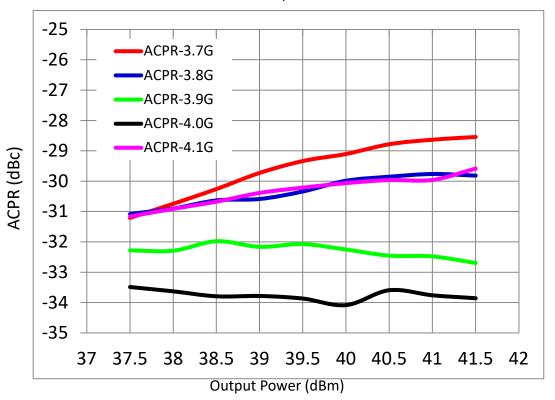



Figure 3. Network analyzer output S11/S21

Document Number: SMAV3741-70 Preliminary Datasheet V1.2

TYPICAL CHARACTERISTICS

3.4-4.0GHz Doherty @Vds=46V

Figure 4. Power Gain and Drain Efficiency as Function of Pulsed CW Output Power

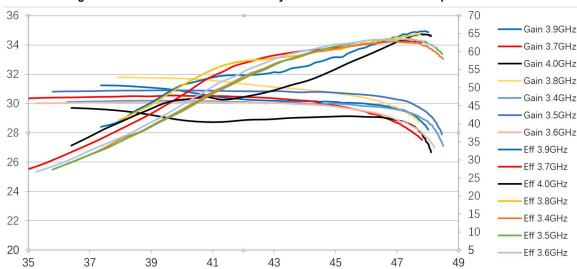
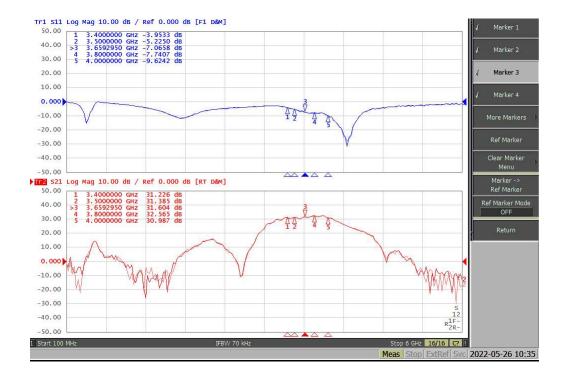
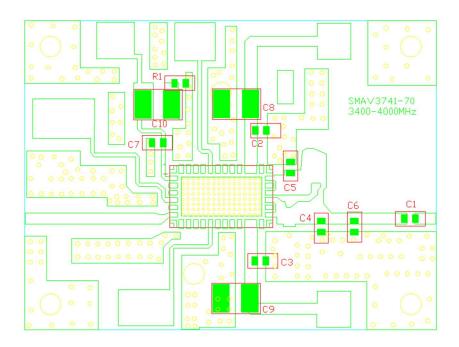
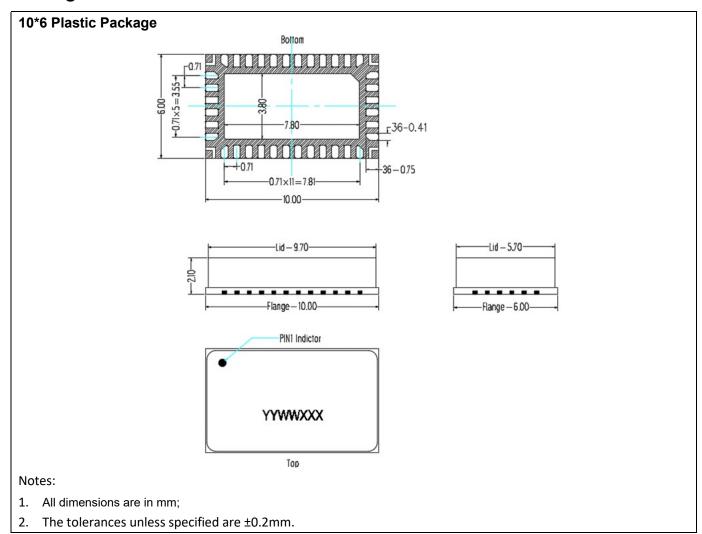
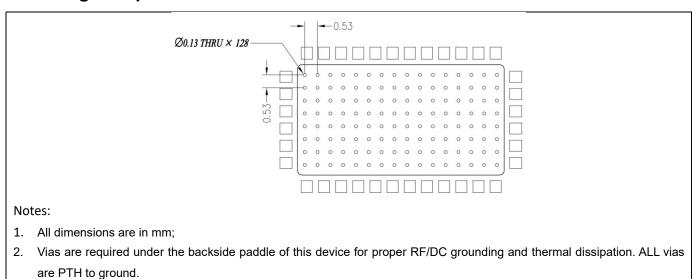


Figure 5. Network analyzer output S11/S21


Figure 6. Application board layout info


		вом		
Part	Quantity	Description	Part Number	Manufacture
C1,C2,C3, C7	4	8.2pF High Q	251SHS8R2BSE	TEMEX
		Capacitor		
C4	1	0.8pF High Q	251SHS0R8BSE	TEMEX
		Capacitor		
C5	1	0.9pF High Q	251SHS0R9BSE	TEMEX
		Capacitor		
C8,C9,C10	3	10uF MLCC	GRM32EC72A106ME	Murata
			05	
C6	1	0.6pF High Q	251SHS0R6BSE	TEMEX
		Capacitor		
R1	1	2.7 Ω Power	ESR03EZPF2R70	ROHM
		Resistor		

Document Number: SMAV3741-70 Preliminary Datasheet V1.2

Package Dimensions

Mounting Footprint Pattern

Document Number: SMAV3741-70 Preliminary Datasheet V1.2

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2020/8/12	Rev 1.0	Preliminary Datasheet
2020/8/21	Rev 1.1	Add 3.6-4.0GHz application data
2022/5/26	Rev 1.2	Add 3.4-4.0GHz application data

Application data based on LWH-20-25/29,22-16

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors

Copyright © by Innogration (Suzhou) Co.,Ltd.