Document Number: GTAH21140B4 Product Datasheet V1.3

GaN 100W,0.8-2GHz ,28V,RF Power Transistor Description

The GTAH21140B4 is a 28V 100W CW device, both input and output matched GaN HEMT, ideal for multiple applications from 0.8-2GHz, and at higher voltage 32V, capable to output more than 120W.

It can support linear and saturated , pulsed or CW application, configured as push pull or single ended $\frac{1}{2}$

There is no guarantee of performance when this part is used outside of stated frequencies.

Typical performance across 1-2GHz class AB application circuit with device soldered

CW signal,Idq=120mA

Voltage (V)	Freq (GHz)	Psat (W)	Eff (%)	Power Gain (dB)
28	0.8-2	110-135	>47	11-15
32	0.8-2	130-160	>46	12-16

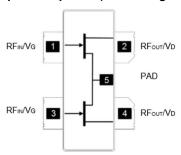
GTAH21140B4

Applications

- L band pulse power amplifier
- · wideband power amplifier
- · Beidou power amplifier

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON


- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Figure 1: Pin Connection definition

Transparent top view (Backside grounding for source)

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+150	Vdc
GateSource Voltage	V _{GS}	-10 to +2	Vdc
Operating Voltage	V _{DD}	36	Vdc
Maximum gate current	lgs	36	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _c	+150	°C
Operating Junction Temperature	TJ	+225	°C

Document Number: GTAH21140B4 Product Datasheet V1.3

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA	Rejc	0.9	°C /W
T _C = 85°C, at Pout=100W CW at 2GHz	K#JC	0.9	-C /VV

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)

DC Characteristics (measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=36mA	V _{DSS}		150		V
Gate Threshold Voltage	VDS =10V, ID = 36mA	$V_{GS(th)}$	-4		-2	V
Gate Quiescent Voltage	VDS =28V, IDS=180mA, Measured in Functional Test	$V_{GS(Q)}$		-2.4		V

Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	2GHz, Pout=100W Pulsed CW					
	All phase,	VSWR		10:1		
	No device damages					

Figure 2: Median Lifetime vs. Channel Temperature

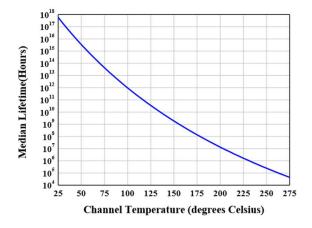
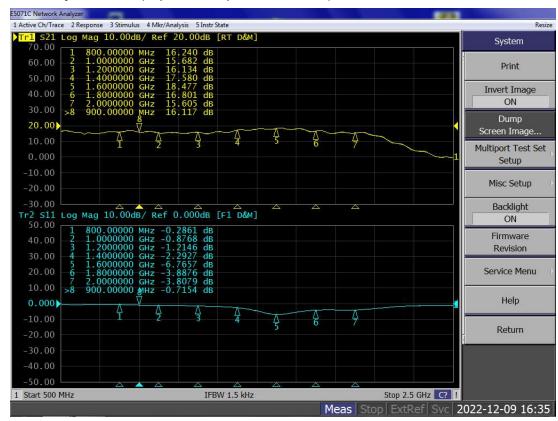


Figure 3: Picture of application board 1-2GHz class AB

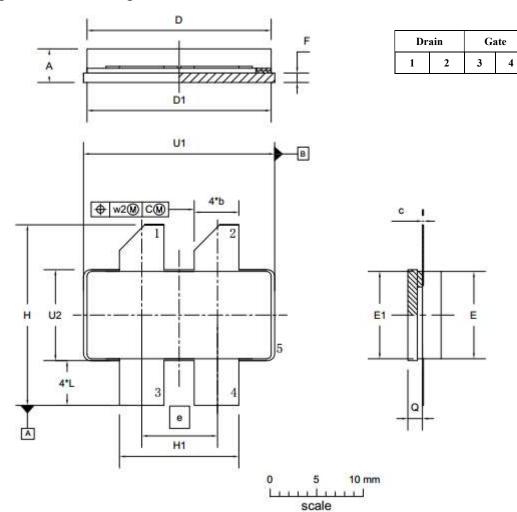


Document Number: GTAH21140B4 Product Datasheet V1.3

Table 4. Bill of materials of application board (PCB layout upon request)

Component	Description	Suggestion	
C1,C2,C3,C4,C20	20pF	10uF/50V	
C5,C6	10uF	MQ101111	
C7,C8	3pF	MQ101111	
C9,C11,C17,C14	1pF	MQ101111	
C13,C19	0.5pF	MQ101111	
C10	1.8pF	MQ101111	
C12	0.8pF	MQ101111	
C15	1.2pF	MQ101111	
C16	2pF	MQ101111	
C18	1.5pF	MQ101111	
R1,R2	Chip Resistor,10 ohm	1206	
PCB	20Mil RO4350B		

Figure 4: Network analyzer S11/S21 (Idq=450mA, Input Power =0dBm)



Document Number: GTAH21140B4 Product Datasheet V1.3

> Source 5

Earless Flanged Ceramic Package; 4 leads

UNIT	A	b	С	D	D ₁	е	E	E ₁	F	Н	H1	L	Q	U ₁	U ₂	W ₁	W ₂
mm	4.72	4.67	0.15	20.02	19.96	7.00	9.50	9.53	1.14	19.94	12.98	5.33	1.70	20.70	9.91	0.25	0.51
mm	3.43	4.93	0.08	19.61	19.66	7.90	9.30	9.25	0.89	18.92	12.73	4.32	1.45	20.45	9.65	0.25	0.51
inahaa	0.186	0.194	0.006	0.788	0.786	0.244	0.374	0.375	0.045	0.785	0.511	0.210	0.067	0.815	0.390	0.01	0.00
inches	0.135	0.184	0.003	0.772	0.774	0.311	0.366	0.364	0.035	0.745	0.501	0.170	0.057	0.805	0.380	0.01	0.02

OUTLINE		REFERENCE		EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	1330E BATE
PKG-B4					03/12/2013

Document Number: GTAH21140B4 Product Datasheet V1.3

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2021/12/29	V1.0	Product Datasheet Creation
2022/3/21	V1.1	Modify typo from B4 to BY4
2022/6/26	V1.2	Correct BY4 back to B4
2023/10/22	V1.3	Modify the carrier application to new one with performance updated

Application data based on: JF-22-01/TC-22-13

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.