RF LDMOS 13.6V 12W Transistor, HF-2000MHz

Description

The ITCN10012PD is a 12W RF LDMOS, designed for multiple applications, up to 2GHz. The transistor is available in a cost effective 4mm*4mm, surface mount, DFN package with 100% DC production test to ensure the quality and consistency.

It can be used in CW, Pulse and multiple modulation mode.

There is no guarantee of performance when this part is used in applications designed Outside of these frequencies.

•Typical Performance of 1.6GHz class AB circuit (On Innogration fixture):

 V_{DD} =13.6 V, I_{DQ} =100 mA, Pulse CW, Pulse Width=20 us, Duty cycle=10%.

Freq	P1dB	P1dB	P1dB	P1dB	P3dB	P3dB	P3dB
(MHz)	(dBm)	(W)	Eff(%)	Gain(dB)	(dBm)	(W)	Eff(%)
1585	39.84	9.6	55.8	14.27	41.25	13.3	62.0
1600	39.57	9.1	55.8	14.1	41.02	12.7	62.0
1615	39.37	8.7	56.0	13.94	40.81	12.0	62.1

•Typical Performance of 800MHz class AB circuit (On Innogration fixture):

 V_{DD} =12.5 V, I_{DQ} =300 mA, Pulse CW, Pulse Width=20 us, Duty cycle=10%.

Freq	P3dB	P3dB	P3dB	P3dB	Psat	Psat	Psat
(MHz)	(dBm)	(W)	Eff(%)	Gain(dB)	(dBm)	(W)	Eff(%)
760	41.46	14.0	55.3	12.95	41.98	15.8	58.1
780	41.72	14.9	58.0	13.83	42.41	17.4	61.5
800	41.84	15.3	59.9	15.18	42.56	18.0	63.7
820	41.70	14.8	60.8	16.62	42.56	18.0	65.6
840	41.27	13.4	60.4	17.13	42.61	18.3	68.4
860	40.77	12.0	59.6	16.87	42.37	17.3	69.5
880	40.27	10.7	58.8	15.87	42.02	15.9	70.2

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift

Suitable Applications

- VHF/UHF Land mobile radio (LMR)
- Beidou amplifier

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

1

1

2

2.7

μΑ

μΑ

V

V

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+40	Vdc
GateSource Voltage	V_{GS}	-10 to +10	Vdc
Operating Voltage	V _{DD}	+13.6	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

 $(V_{DS} = 13.6V, V_{GS} = 0 V)$

 $(V_{GS} = 9 V, V_{DS} = 0 V)$ Gate Threshold Voltage

 $(V_{DS} = 13.6V, I_D = 600 \ \mu A)$ Gate Quiescent Voltage

(V_{DD} = 13.6V, I_D = 100mA, Measured in Functional Test)

VSWR 10:1 at 12W pulse CW Output Power

Gate--Source Leakage Current

Characteristic		mbol	Value			Unit	
Thermal Resistance, Junction to Case				4.0			
T _C = 85°C, T _J =200°C, DC test		(H)C	1.8			°C/W	
Table 3. ESD Protection Characteristics							
Test Methodology		Class					
Human Body Model (per JESD22A114)		Class 2					
Table 4. Electrical Characteristics (TA = 25 °C un	less otherwise	noted)					
Characteristic		Symbol	Min	Тур	Max	Unit	
DC Characteristics						•	
Drain-Source Voltage				10			
V _{GS} =0, I _{DS} =100uA		V (BR)DSS		43		V	
Zero Gate Voltage Drain Leakage Current							

IDSS

IGSS

V_{GS}(th)

 $V_{\text{GS}(\text{Q})}$

No Device Degradation

Load Mismatch (In Innogration Test Fixture, 50 ohm system): V_{DD} = 13.6Vdc, I_{DQ} = 100 mA, f = 1600 MHz

TYPICAL CHARACTERISTICS

1.6GHz beidou application

Figure 2. Power Gain and Drain Efficiency as Function of Pulse Output Power

Figure 3. Network analyzer output S11/S21 VDS = 13.6Vdc, Idq= 100mA

Document Number: ITCN10012PD Product Datasheet V1.1

Reference Circuit of Test Fixture Assembly Diagram 1.6GHz RO4350B 20mils(Layout upon request)

BOM					
C1,C2	10uF/63V				
C3,C4,C13	27pF	ATC600F			
R1	10 ohm				
C5	3.9pF				
C6,C7,C11	2pF				
C8,C9,C12	1pF				
C10	1.8pF				

TYPICAL CHARACTERISTICS

Figure 4. Power Gain and Drain Efficiency as Function of Pulse Output Power

m1	m2	m3
freq=760.0 MHz	freq=820.0 MHz	freq=880.0 MHz
dB(S(2,1))=16.091	dB(S(2,1))=20.204	dB(S(2,1))=19.845
dB(S(1,1))= 2.608	dB(S(1,1))= 6.834	dB(S(1,1))= 3.325
dB(S(1,1)) = -2.608	dB(S(1,1))=-6.834	dB(S(1,1))=-3.325

Figure 3. Network analyzer output S11/S21 VDS = 12.5Vdc, Idq= 300mA

Document Number: ITCN10012PD Product Datasheet V1.1

Reference Circuit of Test Fixture Assembly Diagram 800MHz RO4350B 20mils(Layout upon request)

Reference	Footprint	Value	Quantity
C1	0603 68pF/250V		3
C2	1210	10uF/100V	2
C3	0805 10uF/16V		1
C4	0603	3.9pF/250V	1
C5	0603	10pF/250V	1
C6	0603 2pF/250V		1
C7	0603	2.7pF/250V	1
C8	0603	1pF/250V	2
C9	0603	1.5pF/250V	1
C10	0603 0.5pF/250V		1
C11	0603 5.6pF/250V		1
C12	0603 3.0pF/250V		1
R1	0603 10R		1
U1	DFN 4*4mm	ITCN10012PD	1

Package Dimensions

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2021/12/23	V1.0	Datasheet Creation
2022/8/11	V1.1	Add 800MHz application data

Application data based on ZBB-22-04

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.