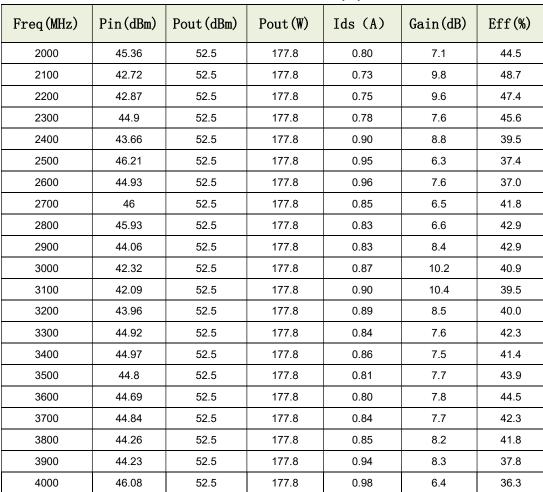
GaN 50V, 170W,2-4GHz Full band RF Transistor

Description


The SG4020VS is a 170-watt, internally matched GaN HEMT, designed for pulsed amplifier applications with frequencies from 2000 to 4000MHz, covering the full S band.

There is no guarantee of performance when this part is used in applications designed outside of these frequencies.

It is recommended to use this device only at pulse condition, and power rating will be different according to different pulse width and duty cycle

Typical pulse Performance (On Innogration fixture with device soldered):

V_{DD} = 50 Volts, I_{DQ} = 100 mA, Pulse CW, Pulse width=100us, Duty cycle=10%.

• Recommended driver:SU4005VS

Applications and Features

- Suitable for broad band application in S band pulse amplifier applications.
- Thermally Enhanced Industry Standard Package
- High Reliability Metallization Process
- Excellent thermal Stability and Excellent Ruggedness
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

SG4020VS GaN TRANSISTOR

Document Number: SG4020VS Preliminary Datasheet V1.0

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

■ Turning the device ON

- 1) Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2) Turn on VDS to nominal supply voltage (50 V)
- 3) Increase VGS until IDS current is attained
- 4) Apply RF input power to desired level

■ Turning the device OFF

- 1) Turn RF power off
- 2) Reduce VGS down to VP, typically -5 V
- 3) Reduce VDS down to 0 V
- 4) Turn off VGS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V _{GS}	-8 to +0	Vdc
Operating Voltage	V _{DD}	0 to 55	Vdc
Maximum Forward Gate Current @ Tc = 25°C	Igmax	36	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _c	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case,P _{OUT} =170W @3GHz	Do 10	0.7	°C/W
by FEA 100us/10%, Tcase=85°C, 50 Vdc, IDQ =100 mA	R⊕JC	0.7	

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)

DC Characteristics

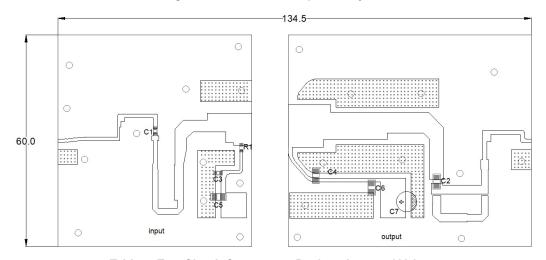
Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	V _{GS} =-8V; I _{DS} =36mA	V _{DSS}		200		V
Gate Threshold Voltage	V _{DS} = 10V, I _D = 36mA	V _{GS} (th)	-4		-2	V
Gate Quiescent Voltage	V _{DS} =50V, I _{DS} =100mA, Measured in Functional Test	$V_{GS(Q)}$		-3.29		V

Functional Tests (In Innogration Test Fixture, 50 ohm system): $V_{DD} = 50 \text{Vdc}$, $I_{DQ} = 100 \text{ mA}$, f = 3000 MHz, Pulse CW, Pulse width=100us, Duty cycle=10%.

Characteristic	Symbol	Min	Тур	Max	Unit
Power Gain @ P_3dB	G _₽	6	7		dB
Drain Efficiency@P _{3dB}	η _D		35		%
3dB compression Power	P _{3dB}		170		W

Load Mismatch (In Innogration Test Fixture, 50 ohm system): $V_{DD} = 50 \text{ Vdc}$, $I_{DQ} = 200 \text{ mA}$, f = 3000 MHz

VSWR 10:1 at 350W pulse CW Output Power	No Device Degradation
---	-----------------------


SG4020VS GaN TRANSISTOR

TYPICAL CHARACTERISTICS

Figure 2. Network analyzer output S11/S21 VDS=50V IDQ=500mA VGS=-3.18V

Figure 3. Test Circuit Component Layout

Table 4. Test Circuit Component Designations and Values

Component	Description	Suggested Manufacturer	
C1,C2,C3,C4	8.2pF	MQ200805C0G2E6R8NDB	
C5,C6	Ceramic multilayer capacitor, 10uF, 100V	10uF/100V	
C7	470uF	63V/470uF	
R1	Chip Resistor,9.1 Ω		
PCB	20mil thick, εr=3.48, Rogers RO4350B, 1 oz. copper		

SG4020VS GaN TRANSISTOR

Unit: mm [inch]

Tolerance .xx +/- 0.01 .xxx +/- 0.005 inches

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2022/8/1	Rev 1.0	Preliminary Datasheet based on SDBV technology

Application data based on YHG-22-19

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.