Gallium Nitride 28V 50W, RF Power Transistor

Description

The NR6006H is a 50W, push pull configured GaN HEMT, designed for multiple applications with frequencies up to 4GHz. There is no guarantee of performance when this part is used in applications designed Outside of these frequencies.

Typical performance (on Innogration narrow band production fixture with device soldered)										
	VDS=28V									
	VDS-ZOV IUQ-ZUUIIIA CVV, VGS=-Z.45V									
F	Pin	Pout	Pout	1/4)	Gain	□#/0/ \	IMD3	IMD5		
(MHz)	(dBm)	(dBm)	(W)	I(A)	(dB)	Eff(%)	(-dBc)	(-dBc)		
225	30.3	45.5	35.5	2.33	15.2	54.39	35.00	32.00		
250	30.2	45.9	38.9	2.61	15.7	53.24	32.50	33.00		
300	31.5	47.5	56.2	3.5	16	57.38	28.90	30.00		
350	31.6	48	63.1	3.8	16.4	59.30	29.80	36.70		
400	30.7	47.5	56.2	3.5	16.8	57.38	28.70	34.00		
450	30.3	47.4	55.0	3.2	17.1	61.33	29.30	34.00		
500	29.7	46.9	49.0	2.8	17.2	62.47	29.80	34.50		
550	28.5	46.6	45.7	2.6	18.1	62.79	33.40	34.60		
600	29	46.4	43.7	2.47	17.4	63.12	37.00	31.80		
650	30.2	46.2	41.7	2.1	16	70.90	35.00	31.00		
678	32.6	46	39.8	1.82	13.4	78.10	34.00	31.00		

NR6006H

Applications and Features

- Suitable for wireless communication infrastructure, wideband amplifier, EMC testing, ISM etc.
- High Efficiency and Linear Gain Operations
- Thermally Enhanced Industry Standard Package
- High Reliability Metallization Process
- Excellent thermal Stability and Excellent Ruggedness
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage (28V)
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings (Not simultaneous, TC = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	150	Vdc
GateSource Voltage	V _{GS}	-10,+2	Vdc
Operating Voltage	V _{DD}	40	Vdc
Maximum Forward Gate Current	Igmax	12	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _c	+150	°C
Operating Junction Temperature(See note 1)	TJ	+225	°C

Document Number: NR6006H Preliminary Datasheet V1.1

Total Device Power Dissipation (Derated above 25°C, see note 2) Pdiss 80 W

- 1. Continuous operation at maximum junction temperature will affect MTTF
- 2. Bias Conditions should also satisfy the following expression: Pdiss < (Tj Tc) / RJC and Tc = Tcase

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Po IC DC	2.2	Chu
T _C = 85°C, T _J =200°C, DC Power Dissipation(See note 1)	R⊕JC-DC	2.3	C/W

Rejc-DC is tested at only DC condition, it is related to the highest thermal resistor value among all test conditions. It might be
differently lower in different RF operation conditions like CW signal ,pulsed RF signal etc.

Table 3. Electrical Characteristics (T_C = 25 ^oC unless otherwise noted)

DC Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	V _{GS} =-8V; I _{DS} =12mA	V _{DSS}	150			V
Gate Threshold Voltage	V _{DS} = 28V, I _D = 12mA	V _{GS} (th)		-2.7		V
Gate Quiescent Voltage	V _{DS} =28V, I _{DS} =100mA, Measured in Functional Test	V _{GS(Q)}		-2.4		V

Functional Tests (In Innogration broadband Test Fixture, 50 ohm system): V_{DD} = 28 Vdc, I_{DQ} = 100 mA, f = 1300 MHz, CW

Characteristic	Symbol	Min	Тур	Max	Unit
Power Gain@ P _{Sat}	Gp		18		dB
Drain Efficiency @ P _{sat}	Eff	65	70		%
Saturated power	P _{SAT}		50	60	W
Input Return Loss	IRL		-7		dB
Mismatch stress at all phases (Device no damage)	VSWR		10:1		Ψ

Loadpull data (half section only):

Test condition: (100us, 10% duty cycle), Vds=28V, Idq=65mA, Gain is defined as compressed gain at Pout

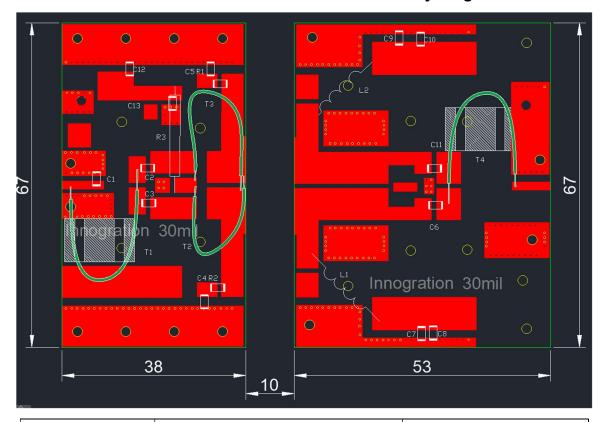
NME6003H 1GHz	Freq (MHz)	VDD (V)	ldq (mA)	Zsource (ohms)	Zload (ohms)	Pout (dBm)	Gain (dB)	Eff (%)
MXP	1000	28	65	5.1+j*11.0	8.0-j*0.4	45.91	21.87	63.02
MXE	1000	28	65	5.1+j*11.0	6.0+j*4.8	43.82	23.92	76.67
Trade Off	1000	28	65	5.1+j*11.0	10.9+j*0.8	45.71	22.43	64.78

NME6003H 2GHz	Freq (MHz)	VDD (V)	ldq (mA)	Zsource (ohms)	Zload (ohms)	Pout (dBm)	Gain (dB)	Eff (%)
MXP	2000	28	65	1.3+j*1.0	8.4-j*2.0	45.81	18.21	63.11
MXE	2000	28	65	1.3+j*1.0	5.4+j*4.3	44.02	22.47	76.40
Trade Off	2000	28	65	1.3+j*1.0	11.0-j*2.5	45.61	18.95	65.29

Document Number: NR6006H Preliminary Datasheet V1.1

NME6003H 3GHz	Freq (MHz)	VDD (V)	ldq (mA)	Zsource (ohms)	Zload (ohms)	Pout (dBm)	Gain (dB)	Eff (%)
MXP	3000	28	65	1.9-j*4.5	6.6-j*3.9	45.82	14.37	68.54
MXE	3000	28	65	1.9-j*4.5	4.6+j*2.4	43.60	16.23	79.78
Trade Off	3000	28	65	1.9-j*4.5	6.6-j*1.6	45.62	15.15	72.34

NME6003H 4GHz	Freq (MHz)	VDD (V)	ldq (mA)	Zsource (ohms)	Zload (ohms)	Pout (dBm)	Gain (dB)	Eff (%)
MXP	4000	28	65	3.2-j*8.4	6.8-j*8.3	45.76	11.40	66.68
MXE	4000	28	65	3.2-j*8.4	3.5-j*3.6	43.41	12.47	78.60
Trade Off	4000	28	65	3.2-j*8.4	6.7-j*6.6	45.56	12.01	70.30


Typical Performance

225-678MHz

Figure 4.Network analyzer output S11/S21

Reference Circuit of Test Fixture Assembly Diagram

Component	Description	Suggested Manufacturer
C1	2.2PF MQ200805	Beijing YN
C13、C6、C11、C7、C9	300pF MQ200805	Beijing YN
C5、C4	10NF 1210	
C2、C3	330pF MQ200805	Beijing YN
C8、C10、C12	10UF 1210	
T1	SFF-50-1.5 50mm BN-61-1502	
T2、T3	SFF-16.7-1.5 50mm	
T4	SFF-25-1.5 50mm BN-61-202	
L1、L2	Ψ0.67 漆包线 内径 3mm 8 turns	
R1、R2	10ohm 1206	
R3	1/8W 500Ω	
РСВ	30mil Rogers4350B	

Package Outline

Flanged ceramic package; 2 mounting holes; 4 leads

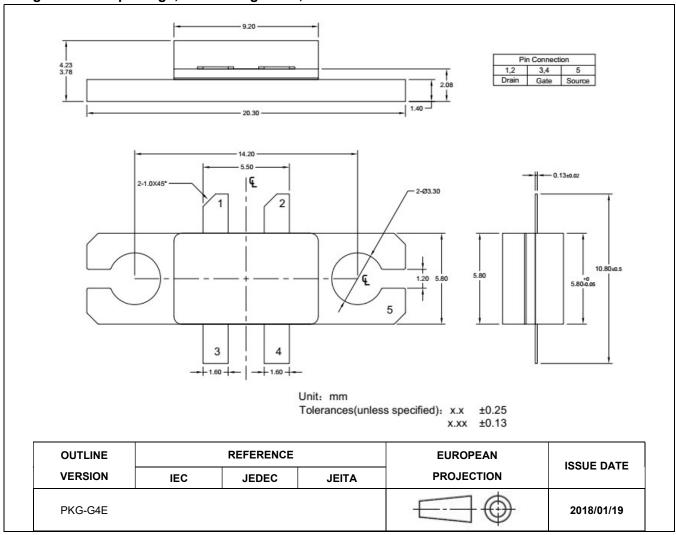


Figure 1. Package Outline PKG-G4E

Document Number: NR6006H Preliminary Datasheet V1.1

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2020/11/16	V1.0	Preliminary Datasheet
2022/8/17	V1.1	Use 225-678MHz data as carrier performance

Application data based on SYX-22-13

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.