MX1506VP LDMOS TRANSISTOR

60W, 50V High Power RF LDMOS FETs

Description

The MX1506VP is a 60-watt, highly rugged, thermally enhanced, unmatched LDMOS FET, designed for wide-band commercial and industrial applications with frequencies HF to 1.5 GHz.

It is featured for high power and high ruggedness, suitable for Industrial, Scientific and Medical application, as well as FM radio, VHF TV and Aerospace applications.

•Typical Performance (On Innogration narrow band fixture with device soldered):

 $V_{DD} = 50$ Volts, $I_{DQ} = 200$ mA, CW.

Frequency	Gp (dB)	P _{out} (W)	η _D @P _{out} (%)
915 MHz	23	60	60

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift

Suitable Applications

- 2-30MHz (HF or Short wave communication)
- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)
- 118 -140MHz (Avionics)
- 1200-1400MHz(L band)

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant
- 136-174MHz (Commercial ground communication)
- 160-230MHz (TV VHF III)
- 30-512MHz (Jammer, Ground/Air communication)
- 470-860MHz (TV UHF)
- 100kHz 1000MHz (ISM, instrumentation)
- 960-1215MHz(Avionics)

Table 1. Maximum Ratings

Rating		Symbol	Value			Unit	
DrainSource Voltage		V _{DSS}	+125			Vdc	
GateSource Voltage		V_{GS}	-10 to +10			Vdc	
Operating Voltage		V _{DD}	+55			Vdc	
Storage Temperature Range		Tstg	-65 to +150			°C	
Case Operating Temperature		Tc	+150			°C	
Operating Junction Temperature		L	+225			°C	
able 2. Thermal Characteristics							
Characteristic		Symbol		Value		Unit	
Thermal Resistance, Junction to Case		Rejc		1.4		°C/W	
T_{C} = 85°C, Pout=60W CW,							
Table 3. ESD Protection Characteristics		•	•		•		

MX1506VP LDMOS TRANSISTOR

Document Number: MX1506VP Preliminary Datasheet V1.1

Human Body Model (per JESD22--A114)

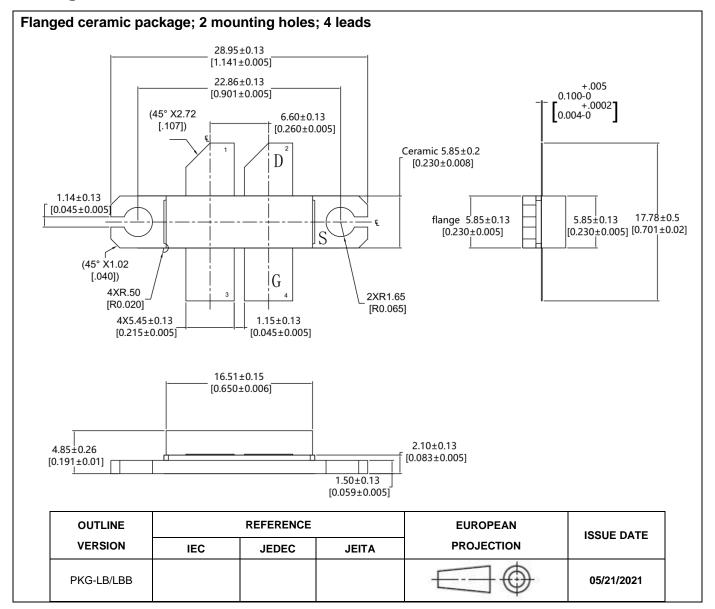

Class 2

Table 4. Electrical Characteristics (TA = 25 $^{\circ}$ C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
DC Characteristics					
Drain-Source Voltage	V		4.05		V
V _{GS} =0, I _{DS} =1.0Ma	$V_{(BR)DSS}$		125		v
Zero Gate Voltage Drain Leakage Current				1	μΑ
$(V_{\text{DS}} = 50 \text{V}, V_{\text{GS}} = 0 \text{V})$	DSS				
Gate—Source Leakage Current					
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	GSS			1	μA
Gate Threshold Voltage	M		0.05		v
$(V_{DS} = 50V, I_{D} = 600 \ \mu A)$	$V_{GS}(th)$		2.65		
Gate Quiescent Voltage	N		3.57		v
$(V_{\text{DD}}=50~\text{V},~\text{I}_{\text{D}}=200~\text{mA},$ Measured in Functional Test)	$V_{\text{GS}(Q)}$				
Drain source on state resistance	Dda(an)		000		mΩ
(V_{\text{DS}} = 0.1V, V_{\text{GS}} = 10 V) Each section side of device measured	Rds(on)		900		11152
Common Source Input Capacitance	C _{ISS}		28.3		pF
(V_{GS} = 0V, V_{DS} =50 V, f = 1 MHz) Each section side of device					
measured					
Common Source Output Capacitance	C _{OSS}		11.9		pF
(V_{GS} = 0V, V_{DS} =50 V, f = 1 MHz) Each section side of device					
measured					
Common Source Feedback Capacitance	C _{RSS}		0.38		pF
(V_{GS} = 0V, V_{DS} =50 V, f = 1 MHz) Each section side of device					
measured					
Functional Tests (In Demo Test Fixture, 50 ohm system) V_{DD} = 50 Vd	c, $I_{DQ} = 200 \text{mA}$, f	= 915 MHz, C	N Signal Meas	surements, Pin	=25dBm
Power Gain@Pout	Gp		23		dB
Output Power	Pout		60		W
Drain Efficiency@Pout	η _D		60		%
Input Return Loss	IRL		-7		dB
Ruggedness at all phase angle	VSWR		10:1		

MX1506VP LDMOS TRANSISTOR

Package Outline

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2018/3/3	Rev 1.0	Preliminary Datasheet Creation
2021/5/21	Rev 1.1	Package outline update

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.