400W, 28V High Power RF LDMOS FETs

Description

The MX0540X is a 400-watt, highly rugged, unmatched LDMOS FET, designed for wideband commercial and industrial applications with frequencies HF to 250MHz. It can be used in Class AB/B and Class C for all typical modulation formats.

- •Typical Performance (On Innogration fixture with device soldered):
- V_{DD} = 28 Volts, I_{DQ} = 2000 mA, CW.

Freq(MHz)	G_P (dB)	P _{-1dB} (W)	Eff(%)	
250	17	380	70	

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCI drift

Suitable Applications

- 2-30MHz (HF or Short wave communication)
- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)
- 118 -140MHz (Avionics)

Table 1. Maximum Ratings

	-	1				
Rating	Symbol	Value			Unit	
DrainSource Voltage	V _{DSS}	+95			Vdc	
GateSource Voltage	V _{GS}	-10 to +10		o +10 Vde		
Operating Voltage	V _{DD}	+40		Vdc		
Storage Temperature Range	Tstg	-65 to +150		°C		
Case Operating Temperature	Tc			°C		
Operating Junction Temperature	TJ		+225			
Table 2. Thermal Characteristics	·			·		
Characteristic	Symbol	N	Value		it	
Thermal Resistance, Junction to Case	D					
T _C = 85°C, T _J =200°C, DC test	Rejc	0.3		°C/W		
Table 3. ESD Protection Characteristics						
Test Methodology		Class				
Human Body Model (per JESD22A114)		Class 2				
Table 4. Electrical Characteristics (T _A = 25 $^{\circ}$ C ur	nless otherwise noted)					
Characteristic		hal Min	Turn	Мах	Linit	

Characteristic		Symbol	Min	Тур	Max	Unit	

DC Characteristics (per half section)

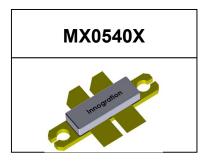
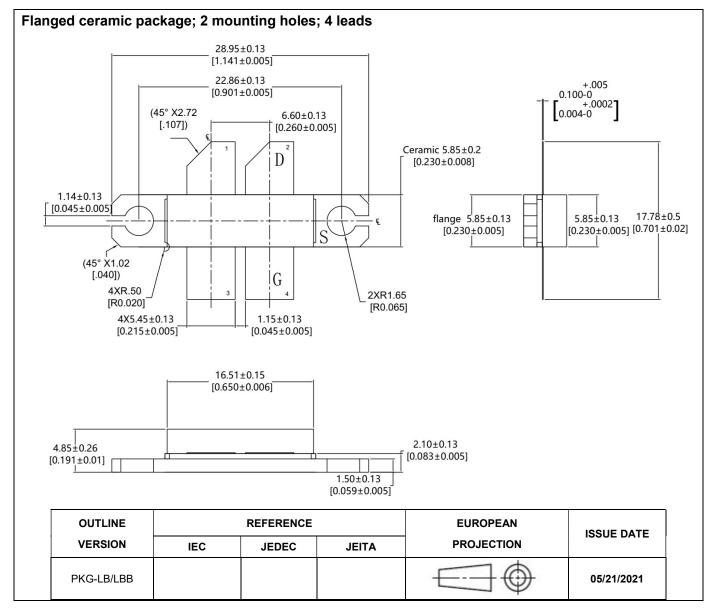


Figure 1. Pin Connection


- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant
- 136-174MHz (Commercial ground communication)
- 160-230MHz (TV VHF III)

Document Number: MX0540X Product Datasheet V1.1

Drain-Source Voltage	V _{(BR)DSS} 95		98		v	
V _{GS} =0, I _{DS} =1.0mA	V (BR)DSS	90	50		v	
Zero Gate Voltage Drain Leakage Current				1	μA	
(V _{DS} = 75V, V _{GS} = 0 V)	I _{DSS}					
Zero Gate Voltage Drain Leakage Current				1	μA	
(V _{DS} = 28 V, V _{GS} = 0 V)	I _{DSS}					
GateSource Leakage Current				1	μΑ	
(V _{GS} = 10, V _{DS} = 0 V)	I _{GSS}					
Gate Threshold Voltage			2.19		V	
(V _{DS} = 28V, I _D = 650 μA)	V _{GS} (th)				v	
Gate Quiescent Voltage			3.0		V	
(V_{DD} = 28 V, I_D = 1.0 A, Measured in Functional Test)	$V_{GS(Q)}$					
Common Source Input Capacitance			187		»Г	
(V _{GS} = 0V, V _{DS} =28 V, f = 1 MHz)	C _{ISS}		107		pF	
Common Source Output Capacitance	C _{oss}		79		pE	
(V _{GS} = 0V, V _{DS} =28 V, f = 1 MHz)	Coss		19		pF	
Common Source Feedback Capacitance	6		4.6		- 5	
(V _{GS} = 0V, V _{DS} =28 V, f = 1 MHz)	C _{RSS}		4.0		pF	
unctional Tests (In Demo Test Fixture, 50 ohm system) V_{DD} = 28 V	′dc, I _{DQ} = 2000 mA	, f =250 MHz,	CW Signal Me	asurements.		
Power Gain	Gp		17		dB	
Drain Efficiency@P1dB	ηD		70		%	
1 dB Compression Point	P _{-1dB}		380		W	
Input Return Loss	IRL		-7		dB	

VSWR 20:1 at 380W pulse CW Output Power	No Device Degradation
---	-----------------------

Package Outline

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2018/03/13	Rev 1.0	Product Datasheet
2019/10/16	Rev 1.1	Modified to rugged version with X suffix ,modified upper frequency
2022/9/19	Rev 1.2	LBB Pkg outline updated

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.