Innogration (Suzhou) Co., Ltd.

Gallium Nitride 50V, 320W, RF Power Transistor

Description

The STAV15320AY2 is a single ended 320-watt, unmatched GaN HEMT, designed for multiple applications with frequencies up to 1.5GHz, mainly for RF energy application at ISM band like 915MHz and 1300MHz etc.

The performance is guaranteed for applications operating in the mentioned frequencies There is no guarantee of performance when this part is used in applications designed Outside of these frequencies.

• Typical Performance (On Innogration fixture with device soldered): $V_{DD} = 50$ Volts, $I_{DQ} = 145$ mA, CW.

Freq (MHz)	Pin (W)	G _P (dB)	Pout(W)	η _D (%)
1300	6	17	320	78

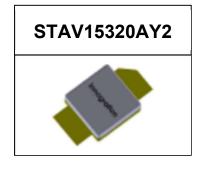
Applications and Features

- Suitable for 1.3GHz/915MHz ISM application
- Suitable for L band radar and avionics application
- Suitable for wideband power amplifier
- High Efficiency and Linear Gain Operations
- Thermally Enhanced Industry Standard Package
- High Reliability Metallization Process
- Excellent thermal Stability and Excellent Ruggedness
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically –5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

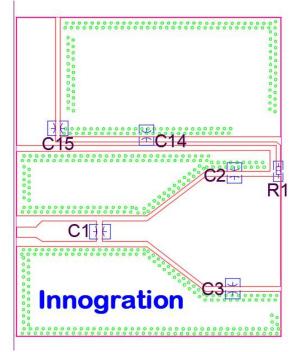

Turning the device OFF

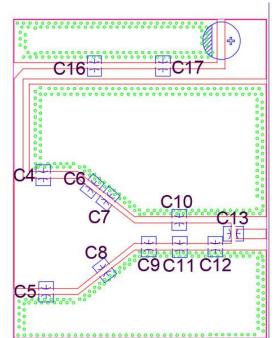
- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V _{GS}	-10 to +0.5	Vdc
Operating Voltage	V _{DD}	39.6	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _c	+150	°C
Operating Junction Temperature	TJ	+225	°C

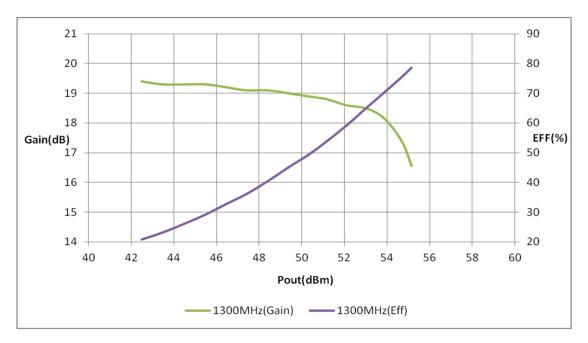
Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case		0.95	°C /W
T _c = 85°C, T _J =200°C, Power dissipation 160W	Rejc	0.85	-0./w


Table 3. Electrical Characteristics (TA = 25° C unless otherwise noted)


DC Characteristics

Characteristic Conditions		Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage VGS=-8V; IDS=39.6mA		V _{DSS}		200		V
Gate Threshold Voltage VDS =10V, ID = 39.6 mA		V _{GS(th)}	-4		-2	V
Gate Quiescent Voltage VDS =50V, IDS=145mA, Measured in Functional Test		$V_{GS(Q)}$		-3.31		V
unctional Tests (In Innogration Test	Fixture, 50 ohm system) :V _{DD} = 50) Vdc, I _{DQ} =145	mA, f =1.3GHz	, Pulsed CW 2	0us/10%	
Characte	ristic	Symbol	Min	Тур	Max	Unit
Power Gain @ P3dB	Gp	17	17.5		dB	
3dB Compression Point	P3dB	300	320		W	
Drain Efficiency@P3dB	η _D	75	78		%	
Input Return Loss	IRL		-10		dB	

Reference Circuit of Test Fixture Assembly Diagram


PCB materials: Roger 4350,30mils, DXF file upon request

Part	description	Model
C1,C13,C14,C16	47pF	ATC800B
C2,C3	3.9pF	DLC70B
C4,C5	2pF	DLC70B
C6,C7,C8,C10	1.2pF	DLC70B
C9	1pF	DLC70B
C11	0.3pF	DLC70B
C12	0.5pF	DLC70B
C15,C17	10uF	10uF/50V
R1	12Ω	0805

Innogration (Suzhou) Co., Ltd.

TYPICAL CHARACTERISTICS

Figure 1. Power gain and drain efficiency as function of CW output power

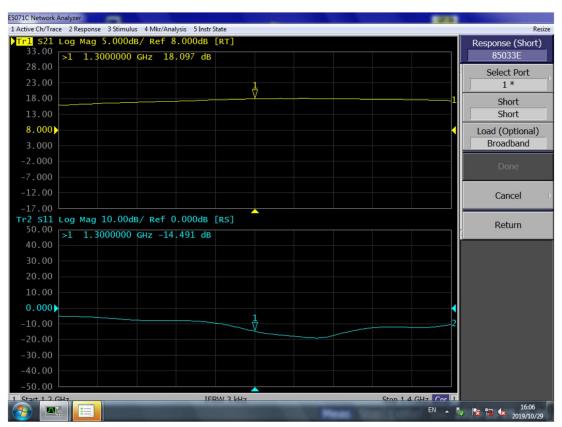
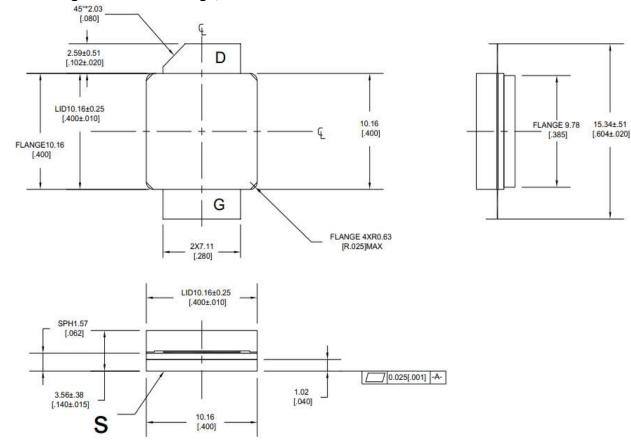



Figure 2. Network analyzer output, S11/S21

Package Outline

Earless Flanged Ceramic Package; 2 leads

Unit: mm [inch] Tolerance .xx +/- 0.01 .xxx +/- 0.005 inches

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2020/4/1	V1.0	Preliminary Datasheet Creation

Application data based on ZL-19-35

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.