Document Number: STCV16750RD4 Preliminary Datasheet V1.0

GaN 50V, 750W, L band CW RF Power Transistor

Description

The STCV16750RD4 is a push pull 750W saturated power capable, internally matched GaN HEMT, ideal for ISM or RF energy applications at fixed frequency point or very narrow band within 1.2 to 1.6GHz typically for 1.3G/1.6G particle accelerator applications.

There is no guarantee of performance when this part is used outside of stated frequencies.

Typical CW performance at 1.3GHz applications with transistor soldered on heatsink

Toot Signal	Frequency	Vds	PL	Gp	Eff
Test Signal	(GHz)	(V)	(W)	(dB)	(%)
CW	1.3	50	790	16	73
CW	1.6	50	730	13.5	72

Applications

- 1.3/1.5GHz particle linear accelerator
- L band power amplifier
- GPS ground station

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+200	Vdc
GateSource Voltage	V_{GS}	-8 to +0.5	Vdc
Operating Voltage	V_{DD}	55	Vdc
Maximum gate current	Igs	100.8	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _C	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

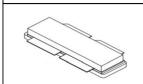

Characteristic	Symbol	Value	Unit	
Thermal Resistance, Junction to Case by FEA	Do 10	0.45	20 000	
T _C = 25°C, at Pd=250W	Rejc	0.45	°C /W	

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)

DC Characteristics (Each path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=50.4mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 50.4mA	V _{GS(th)}	-4	-	-2	V
Gate Quiescent Voltage	VDS =50V, IDS=200mA, Measured in Functional Test	$V_{GS(Q)}$		3.2		V

STCV16750RD4

Document Number: STCV16750RD4 Preliminary Datasheet V1.0

Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	1.3GHz, Pout=750W pulse CW					
	All phase,	VSWR		5:1		
	No device damages					

TYPICAL CHARACTERISTICS

1300MHz

Figure 1: S11/S21 output from Network analyser (VDS= 50V, IDQ=500 mA Vgs =-3.05V)

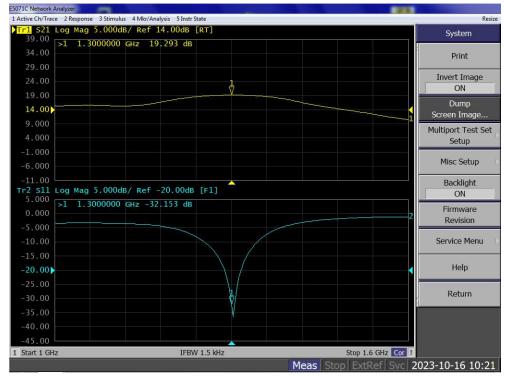
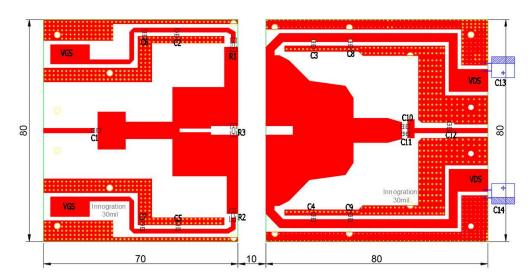



Figure 2: Reference design circuit (PCB DWG file upon request,)

Document Number: STCV16750RD4 Preliminary Datasheet V1.0

Component	Description	Suggestion
C6~C9	10uF	10uF/100V
C1~C5	47pF	MQ301111
C10,C11	22pF	MQ301111
C12	1.8pF	MQ301111
C13,C14	2200uF/63V	Electrolytic Capacitor
R1,R2	18 Ω	Chip Resistor
R3	10 Ω	Chip Resistor
РСВ	30Mil	Rogers4350

1600MHz

Figure 3: S11/S21 output from Network analyser (VDS= 50V, IDQ=500 mA Vgs =-3.05V)

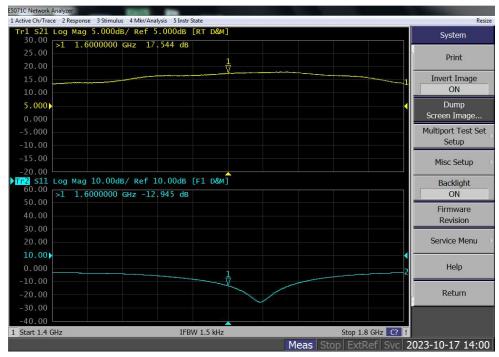
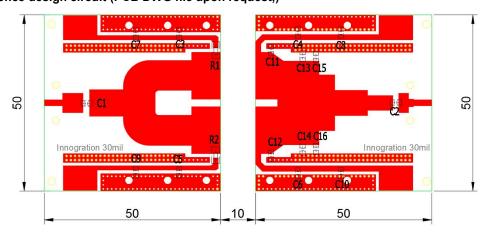
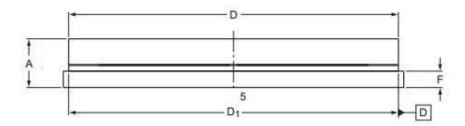
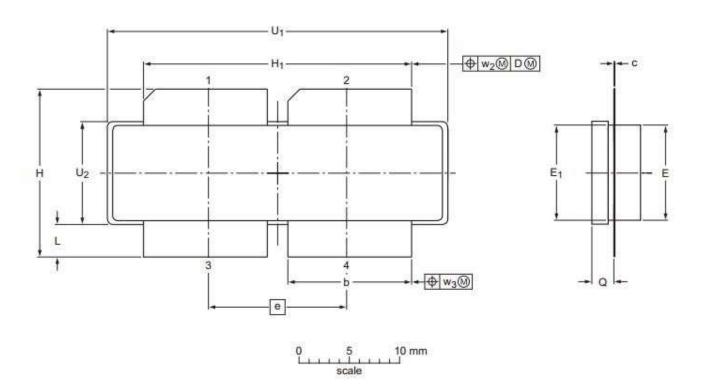



Figure 4: Reference design circuit (PCB DWG file upon request,)


Document Number: STCV16750RD4 Preliminary Datasheet V1.0


Component	Description	Suggestion
C1	30pF	MQ301111
C2	27pF	MQ102525
C3~C6	100pF	MQ101111
C7~C10	10uF/100V	Ceramic multilayer capacitor
C11,C12	3.0pF	MQ301111
C13,C14	2.4pF	MQ301111
C15,C16	0.7pF	MQ301111
R1,R2	10 Ω	Chip Resistor
R3	10 Ω	Chip Resistor
РСВ	30Mil	Rogers4350

Package Outline

Earless flanged ceramic package; 4 leads (1, 2—DRAIN, 3, 4—GATE, 5—SOURCE)

UNIT	A	b	С	D	D ₁	е	E	E ₁	F	Н	H ₁	L	Q	U ₁	U ₂	W_2	W ₂
	4.7	11.81	0.18	31.55	31.52	12.72	9.50	9.53	1.75	17.12	25.53	3.48	2.26	32.39	10.29	0.25	0.25
mm	4.2	11.56	0.10	30.94	30.96	13.72	9.30	9.27	1.50	16.10	25.27	2.97	2.01	32.13	10.03	0.25	0.25
laskas	0.185	0.465	0.007	1.242	1.241	0.540	0.374	0.375	0.069	0.674	1.005	0.137	0.089	1.275	0.405	0.04	0.04
inches	0.165	0.455	0.004	1.218	1.219	0.540	0.366	0.365	0.059	0.634	0.995	0.117	0.079	1.265	0.395	0.01	0.01

OUTLINE		REFERENCE		EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	1000E DATE
PKG-D4					03/12/2013

Document Number: STCV16750RD4 Preliminary Datasheet V1.0

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2023/10/17	V1.0	Preliminary Datasheet Creation

Application data based on: HL-23-48/49

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.