500W,50V RF LDMOS Transistor

Description

The ITEV10500B4 is a 500watt capable, Doherty paired LDMOS transistor, ideal for for 4G/5G cellular applications from 0.6 to 1 GHz ..
It can be configured as asymmetrical Doherty delivering 80W average power, according to normal 8dB back off.

- Typical Doherty RF Performance (On Innogration fixture with device soldered).
$\mathrm{Vds}=50 \mathrm{~V}$ Idq_main $=460 \mathrm{~mA}$, Vgs_peak $=1.8 \mathrm{~V}$

$\begin{gathered} \text { Freq } \\ (\mathrm{MHz}) \end{gathered}$	Pulse CW Signal			$P_{\text {avg }}=49 \mathrm{dBm}$ WCDMA Signal		
	Gain P1dB (dB)	P3dB (W)	Eff@P3dB (\%)	Gp (dB)	Eff(\%)	$\mathrm{ACPR}_{5 \mathrm{~L}}(\mathrm{dBc})$
869	18.32	528.3	56.5	19	48.1	-28.7
881	18.28	538.7	58.3	19	48.2	-30.3
894	18.05	516.2	59.2	19	48.5	-32.6

Applications

- Asymmetrical Doherty amplifier within $0.6-1 \mathrm{GHz}$
- UHF TV
- P band power amplifier

Figure 1: Pin Connection definition
Transparent top view (Backside grounding for source)

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain--Source Voltage	$\mathrm{V}_{\text {Dss }}$	+110	Vdc
Gate--Source Voltage	$\mathrm{V}_{G S}$	-10 to +10	Vdc
Operating Voltage	V_{DD}	+55	Vdc
Storage Temperature Range	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$
Case Operating Temperature	T_{C}	+150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	+225	${ }^{\circ} \mathrm{C}$

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	RөJc	0.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{J}}=200^{\circ} \mathrm{C}, \mathrm{DC}$ test			

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22--A114)	Class 2

Table 4. Electrical Characteristics (TA $=25{ }^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

DC Characteristics

Drain-Source Voltage $\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{DS}}=100 \mathrm{uA}$	$V_{\text {(8RpIoss }}$		110		V
Zero Gate Voltage Drain Leakage Current $\left(V_{D S}=90 \mathrm{~V}, V_{G S}=0 \mathrm{~V}\right)$	loss	- -	- -	1	$\mu \mathrm{A}$
Gate--Source Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=11 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}\right)$	$\mathrm{l}_{\text {css }}$	-	——	1	$\mu \mathrm{A}$
Gate Threshold Voltage $\left(V_{D S}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=600 \mu \mathrm{~A}\right)$	$\mathrm{V}_{\text {Gs }}(\mathrm{th})$	-	2	-	V
Gate Quiescent Voltage $\left(\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=500 \mathrm{~mA}\right.$, Measured in Functional Test)	$\mathrm{V}_{\text {Gs(a) }}$	-	3.3	-	V

Load Mismatch (In Innogration Test Fixture, $\mathbf{5 0}$ ohm system): $V_{D D}=50 \mathrm{Vdc}, \mathrm{I}_{\mathrm{DQ}}=500 \mathrm{~mA}, \mathrm{f}=894 \mathrm{MHz}$

VSWR 10:1 at 80W WCDMA Output Power	No Device Degradation

869-894MHz application board

Reference Circuit of Test Fixture Assembly Diagram 20mils RO4350B

Figure 2. Test Circuit Component Layout
Table 5. Test Circuit Component Designations and Values

Designator	Footprint	Comment	Quantity
C1, C2, C25, C26	0603	10 pF	4
C3, C17, C18, C19, C20, C21, C22, C23	0603	6.8 pF	8
C4, C5, C6, C7, C8	0603	68 pF	5
C9, C10, C11, C12	1210	$10 \mathrm{uF} / 100 \mathrm{~V}$	4
C13, C14		$220 \mathrm{uF} / 63 \mathrm{~V}$	2
C15	0603	2.7 pF	1
C16	0603	1.1 pF	1
C24	0603	2 pF	1
R1, R2	0603	10 R	2
R3	2512	RFR50N-20CT0410B	1
W1		DC07F02 (YANTEL 2dB)	1

(pF capacitors are ATC 600 S series)

TYPICAL CHARACTERISTICS

Figure 5. Power Gain and Drain Efficiency as function of Power Output at Idq=460mA

Figure 5.Network analyzer output S11/S21

Earless Flanged Ceramic Package; 4 leads

Drain		Gate		Source
1	2	3	4	5

UNIT	\mathbf{A}	\mathbf{b}	\mathbf{c}	\mathbf{D}	\mathbf{D}_{1}	\mathbf{e}	\mathbf{E}	$\mathbf{E}_{\mathbf{1}}$	\mathbf{F}	\mathbf{H}	$\mathbf{H} 1$	\mathbf{L}	\mathbf{Q}	$\mathbf{U}_{\mathbf{1}}$	$\mathbf{U}_{\mathbf{2}}$	$\mathbf{W}_{\mathbf{1}}$	$\mathbf{W}_{\mathbf{2}}$
mm	4.72	4.67	0.15	20.02	19.96	7.90	9.50	9.53	1.14	19.94	12.98	5.33	1.70	20.70	9.91	0.25	0.51
inches	3.43	4.93	0.08	19.61	19.66		9.30	9.25	0.89	18.92	12.73	4.32	1.45	20.45	9.65		
	0.186	0.194	0.006	0.788	0.786	0.311	0.374	0.375	0.045	0.785	0.511	0.210	0.067	0.815	0.390	0.01	0.02

OUTLINE VERSION	REFERENCE			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		

Revision history

Table 7. Document revision history

Date	Revision	Datasheet Status
$2023 / 10 / 20$	Rev 1.0	Preliminary Datasheet

Application data based on LSM-23-32

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose."Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors
Copyright © by Innogration (Suzhou) Co.,Ltd.

