GaN HEMT 28V, 40W, 1.8-2.7GHz Power Transistor

Description

The GTAH27040C6 is a dual path 40W, internal matched GaN HEMT, operated from 1.8-2.7GHz. It features high gain, high efficiency, wide band and low cost, in 10*6mm open cavity plastic package. It can be configured as a single stage Doherty capable of delivering Pavg up to 6W, according to normal 8dB back off.

There is no guarantee of performance when this part is used outside of stated frequencies.

> Typical Doherty Single--Carrier W--CDMA Characterization Performance at wideband Doherty of 2.1-2.4GHz

Input Signal :WCDMA 1 Carrier with PAR = 10 dB @ 0.01% Probability on CCDF , Pulsed CW: 20us, 10%

• • • • • • • • • • • • • • • • • • • •	• VDD - 26 VdC, IDQA - 66ITIA, VGSB3.36VdC,						
Freq	Pout	P3dB	ACPR	Gain	Eff (%)		
(MHz)	(dBm)	(W)	(dBc)	(dB)	Eff (%)		
2100	35	37.0	-28.2	15.4	47.7		
2150	35	32.3	-28.2	16.0	48.3		
2200	35	31.7	-28.4	17.4	47.9		
2250	35	36.0	-28.4	17.5	47.4		
2300	35	38.6	-29.9	17.3	46.8		
2350	35	38.1	-32.3	17.1	46.9		
2400	35	32.9	-34.3	16.4	47.6		

VDD = 28 Vdc, IDQA = 68mA, VGSB = -3.58Vdc,

Applications

- 5G Doherty amplifier within 2.5-2.7, 2.1-2.2, 1.8-1.9G either as driver or as final
- S band power amplifier
- L band power amplifier

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

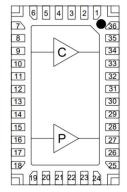

- 1. Set VGS to the pinch--off (VP) voltage, typically –5 V $\,$
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Figure 1: Pin Connection definition

		11313	1013	
Turn	ing t	he de	vice	OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Transparent top view (Backside grounding for source)

GTAH27040C6

Document Number: GTAH27040C6 Preliminary Datasheet V1.0

Pin No.	Symbol	Description		
9,10	RF IN/Vgs1	RF Input, Vgs bias for main path		
15,16	RF IN/Vgs2	RF Input, Vgs bias for peak path		
33,34	RF OUT/VDD1	RF Output, VDD bias for Main path		
27,28	RF OUT/VDD2	RF Output, VDD bias for Peak path		
Rest pins	NC	No connection		
2,5,7,12,13,18,20,23,25,30,31,36,	01/5	DC/RF Ground. Must be soldered directly to heatsink or copper coin for		
Package Base	GND	CW application.		

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+150	Vdc
GateSource Voltage	V _{GS}	-8 to +0.5	Vdc
Operating Voltage	V _{DD}	36	Vdc
Maximum gate current	lgs	10	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

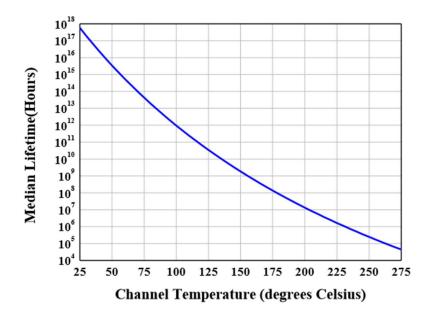
Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA	Balo		
T _c = 85°C, Pdiss=4W at Pavg=35dBm WCDMA 1 carrier	Rejc	6.5	°C /W

Notes: Based on expected carrier amplifier efficiency of Doherty, Pavg assumes 10% peaking amplifier contribution of total average Doherty rated power. Thermal resistance is measured to package backside

Table 3. Electrical Characteristics (TA = 25° C unless otherwise noted)

DC Characteristics (main path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	vn Voltage VGS=-8V; IDS=4mA			200		V
Gate Threshold Voltage	VDS =10V, ID = 4mA	V _{GS(th)} -4 -2		-2	V	
Gate Quiescent Voltage	VDS =28V, IDS=65mA, Measured in Functional Test	V _{GS(Q)}		-2.4		V


DC Characteristics (peak path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=6mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 6mA	V _{GS(th)}	-4		-2	V
Gate Quiescent Voltage	VDS =28V, IDS=90mA, Measured in Functional Test	V _{GS(Q)}		-2.4		V

Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	2.1GHz, Pout=35dBm WCDMA					
	1 Carrier, All phase, VSWR 10		10:1			
	No device damages					

Figure 2: Median Lifetime vs. Channel Temperature

 Typical performance

 Figure 3: Network analyzer output, S11 and S21 (2.1-2.4GHz Doherty)

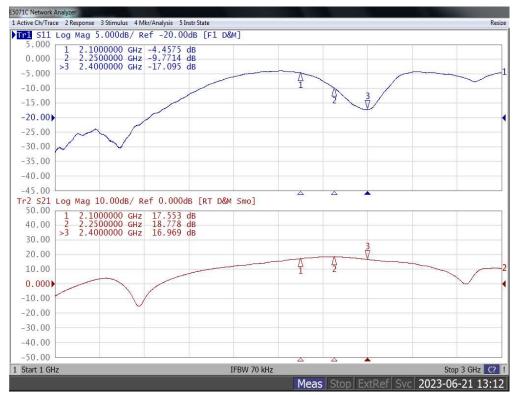


Figure 4: Picture of application board Doherty circuit for 2.1-2.4GHz

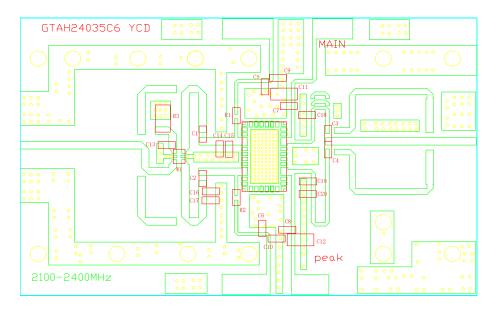
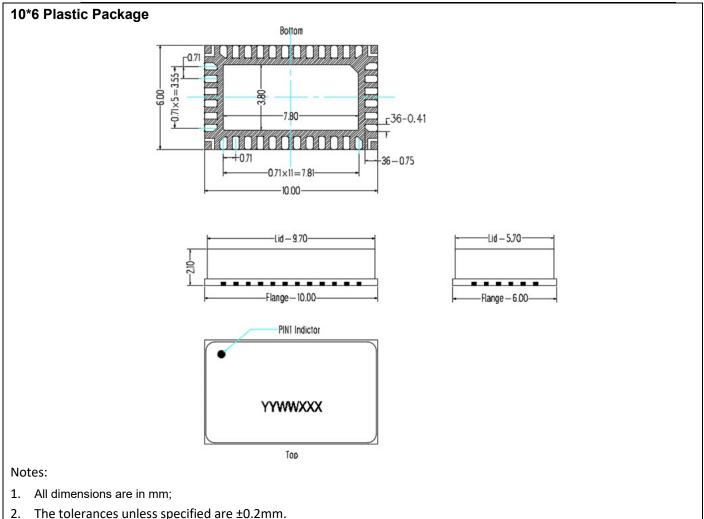



Table 4. Bill of materials of application board (PCB layout upon request, RO4350B 20mils)

Designator	Comment	Footprint	Quantity
C1, C2, C3, C4, C5, C6, C7, C8	15 pF	0603	8
C9, C10	1 uF	0603	2
C11, C12	10 uF	1210	2
C13, C17	0.7	0603	2
C14, C15, C16	1.1	0603	3
C18, C20	1.2 pF	0603	2
C19	1.0 pF	0603	1
R1, R2	10 Ω	0603	2
R3	51 Ω	1206	2
W1(Xinger)	X4C25J1-03G	0805	1

Document Number: GTAH27040C6 Preliminary Datasheet V1.0

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2023/10/22	V1.0	Preliminary Datasheet Creation

Application data based on: LSM-23-21

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.