60W, 50V High Power RF LDMOS FETs

Description

The ITGV15060J2 is a 60-watt, LDMOS FET, designed for ISM applications up to 1.5GHz, including RF Energy at 915MHz/1300MHz etc. It can be used in Class AB/B and Class C configuration, supporting both CW and pulsed signal

•Typical Performance at 915M/1300MHz (On Innogration fixture with device soldered):

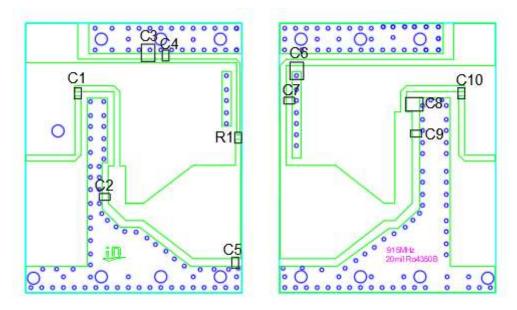
Vds= 50V, Vgs=2.96V,Idq=10mA						
Freq(MHz)	Test signal	P-1(dBm)	P-1Gain(dB)	P-3(dBm)	P-3(W)	Eff (%)
015	Pulsed	47.66	21.1	48.57	71.9	65.0
915	CW	47.42	20.8	48.16	65.4	62.1
1200	Pulsed	47.33	18.7	48.12	64.9	63.7
1300	CW	47.10	18.6	47.42	60.1	60.7

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Internally Matched for Ease of Use
- Excellent thermal stability, low HCI drift

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

Table 1. Maximum Ratings


Rating		nbol	Value			Unit
DrainSource Voltage		oss	110			Vdc
GateSource Voltage		GS	-10 to +10			Vdc
Operating Voltage		DD		+50		Vdc
Storage Temperature Range	Ts	stg	-65 to +150			°C
Case Operating Temperature	т	c	+150			°C
Operating Junction Temperature	Т	J		+225		°C
Table 2. Thermal Characteristics					<u>.</u>	
Characteristic		nbol	Value			Unit
Thermal Resistance, Junction to Case			1.0			0000
T _c = 85°C, Pout=60W 915MHz	Re	JC	1.2			°C/W
Table 3. ESD Protection Characteristics						
Test Methodology		Class				
Human Body Model (per JESD22A114)			Class 2			
Table 4. Electrical Characteristics (TA = 25 C unless other interval)	nerwise no	oted)				
Characteristic		Symbol	Min	Тур	Max	Unit
DC Characteristics (per half section)						
Drain-Source Breakdown Voltage		N				V
(V _{GS} =0V; I _D =100uA)		V _{DSS}	100			v
Zero Gate Voltage Drain Leakage Current		I _{DSS}			10	μA

Document Number: ITGV15060J2 Preliminary Datasheet V1.0

$(V_{DS} = 50 \text{ V}, \text{ V}_{GS} = 0 \text{ V})$					
GateSource Leakage Current				1	۵
(V _{GS} = 6 V, V _{DS} = 0 V)	I _{GSS}			Ι	μA
Gate Threshold Voltage	V _{GS} (th)		3		V
(V _{DS} = 50V, I _D = 600 uA)	V _{GS} (UI)		5		v
Gate Quiescent Voltage	V _{GS(Q)}		2.9		V
(V_{DD} = 50 V, I_{DQ} = 10 mA, Measured in Functional Test)	V GS(Q)		2.9		v
Functional Tests (On Innogration Test Fixture, 50 ohm system): V _{DD} =50Vdc, I _{DQ} =10 mA, f = 1.3GHz, Pin=32dBm CW Signal Measurements.					
Power Gain	Gp		16		dB
Drain Efficiency @ P _{OUT}	ηD		60		%
Output Power	P _{out}		60		W
Input Return Loss	IRL		-7		dB
.oad Mismatch (In Innogration Test Fixture, 50 ohm system): V _{DD} = 50 Vdc, I _{DQ} = 10 mA, f = 1300 MHz					

VSWR 10:1 at 60W Output Power	No Device Degradation
at all Phase Angles, pulsed CW, 100us, 10%	

Reference Circuit of Test Fixture Assembly Diagram

915MHz

Figure 1. Test Circuit Component Layout

Table 1. Test Circuit Component Designations and Values

Component	Value	Description	
C1,C10	10pF	ATC600S	
C2	C2 8.2pF ATC		
C5	2.0pF	ATC600S	
C3,C6	10uF	TDK1206	
C4,C7	33pF	ATC600S	
C8	5.1pF	ATC600S	
С9	1.0pF	ATC600S	
R1	10 Ω		

1300MHz

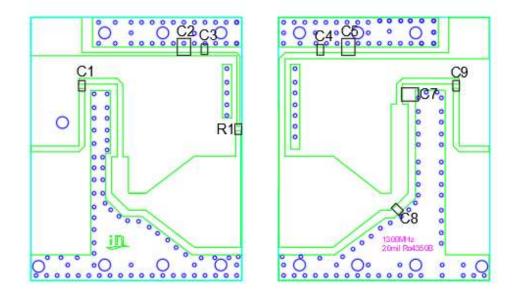


Figure 2 Test Circuit Component Layout

Table 6. Test Circuit Component Designations and Values

Component	Value	Description
C1,C9	10pF	ATC600S
C2,C5	10uF	TDK1206
C3,C4	33pF	ATC600S
C7	1.5pF	ATC600S
C8	7.5pF	ATC600S
R1	10 Ω	

Package Outline

Earless ceramic package; 2 leads

Figure 1. Package Outline PKG-MMS

Revision history

Table 6. Document revision history

Date	Revision	Datasheet Status
2023/10/23	Rev 1.0	Preliminary Datasheet

Application data based on HJ-23-18

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.