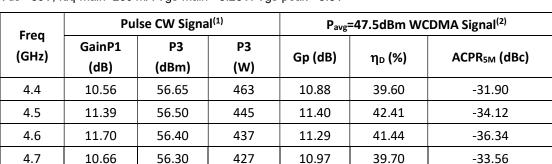
Gallium Nitride 50V, 450W,4.4-4.8GHz RF Power Transistor

Description


The STCV47450BY4V is a 450-watt, internally matched GaN HEMT, designed for 5G cellular applications with frequencies from 4.4-4.8GHz, **enabled by wide band VBW capability to support IBW 200MHz**.

It can be configured as asymmetrical Doherty for 5G application, delivering 55W average power, according to normal 9dB back off.

Typical Doherty Pulsed CW and 1C W--CDMA Characterization Performance:

(1)Pulsed condition: 100us and 10%, (2)1C WCDMA; Signal PAR = 10 dB @ 0.01% Probability on CCDF.

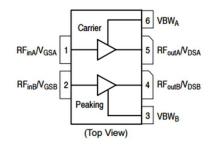
Vds= 50V, Idq-main=260 mA Vgs-main=-3.28V. Vgs-peak=-5.8V

From		Pulse CW	/ Signal ⁽¹⁾		P _{avg} =	47.5dBm WC	DMA Signal ⁽²⁾
Freq (GHz)	P3	P3	P3.5	P3.5	Gp (dB)	η _D (%)	ACPR₅ _M (dBc)
	(dBm)	(W)	(dBm)	(W)		• • •	
4.6	56.50	447	56.65	463	11.57	43.00	-33.96
4.7	56.23	420	56.45	442	11.50	43.30	-35.73
4.8	56.17	414	56.32	429	11.03	41.50	-35.90

Applications

• Asymmetrical Doherty amplifier within N79 5G band and C band power amplifier

Important Note: Proper Biasing Sequence for GaN HEMT Transistors


Turning the device ON

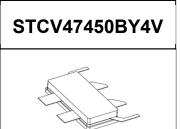

- 1. Set VGS to the pinch—off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Figure 1: Pin Connection definition

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Document Number: STCV47450BY4V Preliminary Datasheet V1.1

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain—Source Voltage	V _{DSS}	+200	Vdc
Gate—Source Voltage	V _{GS}	-8 to +0.5	Vdc
Operating Voltage	V _{DD}	55	Vdc
Maximum gate current	Igs	55.6	mA
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _C	+150	°C
Operating Junction Temperature	TJ	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case by FEA	Rejc	1.2	°C /W
T _C = 85°C, Pout=55W, 4.7GHz Doherty application board	R⊕JC	1.3	-0 /00

Table 3. Electrical Characteristics (TA = 25℃ unless otherwise noted)

DC Characteristics (main path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=21.6mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 21.6mA	$V_{GS(th)}$	-4		-2	V
Gate Quiescent Voltage	VDS =50V, IDS=280mA, Measured in Functional Test	$V_{GS(Q)}$		-3.07		V

DC Characteristics (peak path, measured on wafer prior to packaging)

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VGS=-8V; IDS=34mA	V _{DSS}		200		V
Gate Threshold Voltage	VDS =10V, ID = 34mA	$V_{GS(th)}$	-4		-2	V
Gate Quiescent Voltage	VDS =50V, IDS=280mA Measured in Functional Test	$V_{GS(Q)}$		-3.3		V

Ruggedness Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Load mismatch capability	4.7GHz, Pout=55W WCDMA 1					
	Carrier in Doherty circuit	VCMD		10.1		
	All phase,	VSWR		10:1		
	No device damages					

Document Number: STCV47450BY4V Preliminary Datasheet V1.1

4.4-4.7GHz

Typical performance

Figure 2: Intermodulation Distortion Products versus Two--Tone Spacing

Vdd=50V, Pout=47.5dBm, Center Frequency=4.7GHz

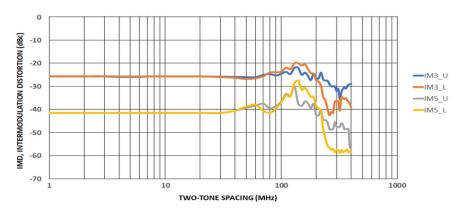


Figure 3: Efficiency and power gain as function of Pout

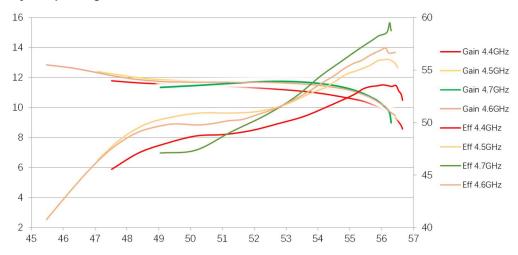
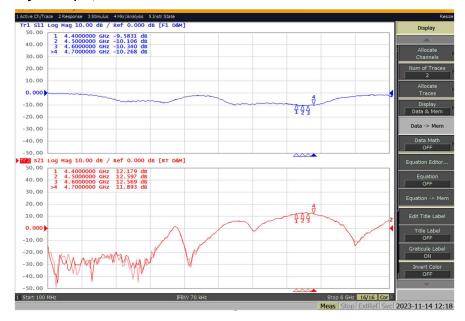



Figure 4: Network analyzer output, S11 and S21

Document Number: STCV47450BY4V Preliminary Datasheet V1.1

Figure 5: Picture of application board Doherty circuit

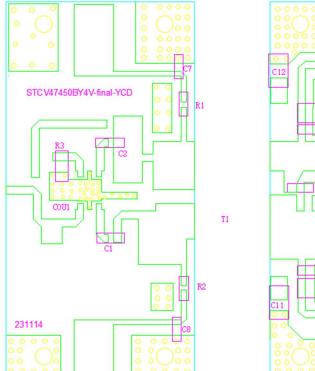
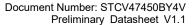



Table 4. Bill of materials of application board (PCB layout upon request, RO4350B 20mils)

, , , , , , , , , , , , , , , , , , ,						
Part	Quantity	Description	Part Number	Manufacture		
C1,C2,C4,C5,C6,	7	3.9pFHigh Q	251SHS3R9BSE	TEMEX		
C7,C8		Capacitor				
C3	1	0.8pFHigh Q	251SHS0R8BSE	TEMEX		
		Capacitor				
C9,C10,C11,C12	4	10uF MLCC	GRM32EC72A106M	Murata		
			E05			
R1,R2	2	10 Ω Power	ESR03EZPF100	ROHM		
		Resistor				
R3	1	51 Ω Power	S1206N	RN2		
		Resistor				
COUT1	1	3 dB Bridge	X3C45F1-03S	Anaren		
T1	1	450W GaN	STCV47450BY4V	Innogration		
		Dual Transistor				

4.6-4.8GHz Typical performance

Figure 6: Efficiency and power gain as function of Pout

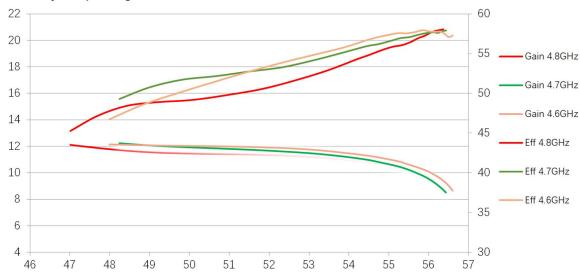
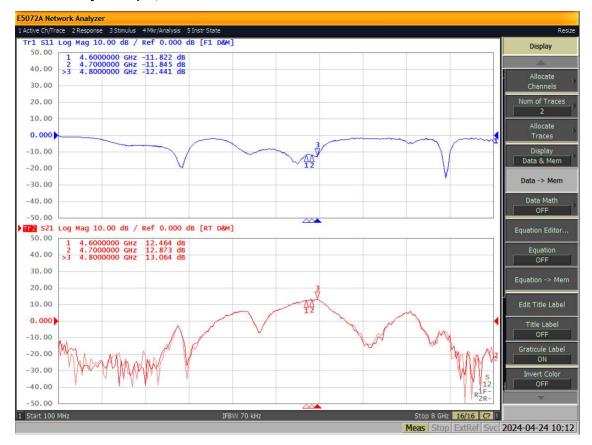
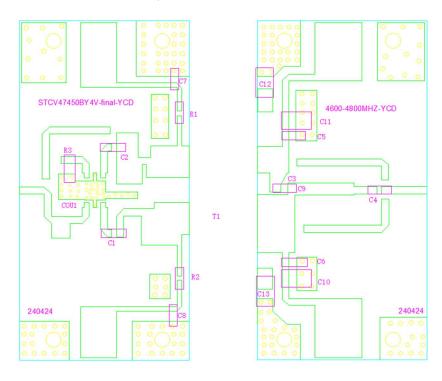
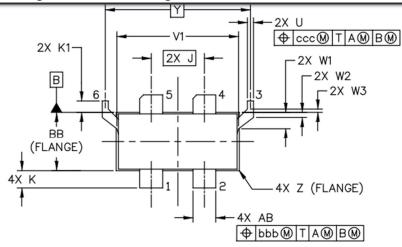



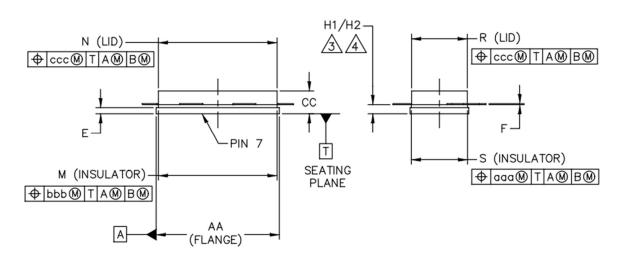
Figure 7: Network analyzer output, S11 and S21

Document Number: STCV47450BY4V Preliminary Datasheet V1.1

Figure 8: Picture of application board Doherty circuit




Table 5. Bill of materials of application board (PCB layout upon request, RO4350B 20mils)


Part	Quantity	Description	Part Number	Manufacture
C1,C2,C4,C5,C6,	7	3.9pFHigh Q	251SHS3R9BSE	TEMEX
C7,C8		Capacitor		
C3	1	0.8pFHigh Q	251SHS0R8BSE	TEMEX
		Capacitor		
C9,C10,C11,C12	4	10uF MLCC	GRM32EC72A106M	Murata
			E05	
R1,R2	2	10 Ω Power	ESR03EZPF100	ROHM
		Resistor		
R3	1	51 Ω Power	S1206N	RN2
		Resistor		
COUT1	1	3 dB Bridge	X3C45F1-03S	Anaren
T1	1	450W GaN	STCV47450BY4V	Innogration
		Dual Transistor		

Document Number: STCV47450BY4V Preliminary Datasheet V1.1

Earless Flanged Ceramic Package; 6 leads- BY4V

	INCH		MILLIMETER			IN	CH	MILLIM	ETER
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	.805	.815	20.45	20.70	R	.365	.375	9.27	9.53
BB	.380	.390	9.65	9.91	S	.365	.375	9.27	9.53
CC	.125	.170	3.18	4.32	U	.035	.045	0.89	1.14
Ε	.035	.045	0.89	1.14	V1	.795	.805	20.19	20.45
F	.004	.007	0.10	0.18	W1	.0975	.1175	2.48	2.98
H1	.057	.067	1.45	1.70	W2	.0225	.0425	0.57	1.08
H2	.054	.070	1.37	1.78	W3	.0125	.0325	0.32	0.83
J	.350	BSC	8.89 BSC		Υ	.956	BSC	24.28	B BSC
K	.0995	.1295	2.53	3.29	Z	R.000	R.040	R0.00	R1.02
K1	.070	.090	1.78	2.29	AB	.145	.155	3.68	3.94
М	.774	.786	19.66	19.96	aaa	.0	005	0.1	3
Ν	.772	.788	19.61	20.02	bbb	.010 0.25		25	
					ccc	.0)15	0.3	88

Document Number: STCV47450BY4V Preliminary Datasheet V1.1

Revision history

Table 4. Document revision history

Date	Revision	Datasheet Status
2023/11/14	V1.0	Preliminary Datasheet Creation
2024/4/24	V1.1	Add 4.6-4.8GHz data and claim up to 4.8GHz supportable

Application data based on LWH-23-23/24-13

Notice

Specifications are subject to change without notice. Innogration believes the information within the data sheet to be reliable. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose.

"Typical" parameter is the average values expected by Innogration in quantities and are provided for information purposes only. It can and do vary in different applications and related performance can vary over time. All parameters should be validated by customer's technical experts for each application.

Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For any concerns or questions related to terms or conditions, please check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.