Document Number: S3Q122K0RVP Preliminary Datasheet V1.0

S3Q122K0RVP

1030/1090MHz, 2000W, GaN RF Power Transistor

Description

The S3Q122K0RVP is a 2000-watt, high performance, internally matched GaN RF Power transistor, designed for multiple applications with frequencies 1030-1090MHz.

It is featured for high power and high ruggedness, suitable for Industrial, Scientific and Medical application, as well as Avionics application, L band pulse amplifier.

Please notice that both leads at input and output side are internally connected, to configure this device as single ended ,shown as right picture.

Vgs=-3.25V Vds=50V Idq=280mA ,Pulse 100us 10%								
Freq (MHz)	Psat (dBm)	Psat (W)	IDS (A)	Pin (dBm)	Gain (dB)	Eff (%)	2 nd (dBc)	3 rd (dBc)
1030	63.17	2074.9	7.52	48.69	14.48	55.18	-29.10	-45.60

Applications and Features

- Suitable for L band pulse amplifier, wideband amplifier, EMC testing, ISM etc.
- High Efficiency and Linear Gain Operations
- Thermally Enhanced Industry Standard Package
- High Reliability Metallization Process
- · Excellent thermal Stability and Excellent Ruggedness
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Important Note: Proper Biasing Sequence for GaN HEMT Transistors

Turning the device ON

- 1. Set VGS to the pinch--off (VP) voltage, typically -5 V
- 2. Turn on VDS to nominal supply voltage (50V)
- 3. Increase VGS until IDS current is attained
- 4. Apply RF input power to desired level

Turning the device OFF

- 1. Turn RF power off
- 2. Reduce VGS down to VP, typically -5 V
- 3. Reduce VDS down to 0 V
- 4. Turn off VGS

Table 1. Maximum Ratings

go						
Rating	Symbol	Value	Unit			
DrainSource Voltage	V _{DSS}	+200	Vdc			
GateSource Voltage	V _{GS}	-8 to 0	Vdc			
Operating Voltage	V _{DD}	0 to 55	Vdc			
Maximum forward gate current	Igf	270	mA			
Storage Temperature Range	Tstg	-65 to +150	С			
Case Operating Temperature	T _C	-55 to +150	С			
Operating Junction Temperature	TJ	+225	С			

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case			
85 °C Case backside Temperature	RθJC	0.08	C/W
Pout = 2000 W, Pulse: 20 us PW, 10% DC			

S3Q122K0RVP GaN TRANSISTOR

Document Number: \$3Q122K0RVP Preliminary Datasheet V1.0

Table 3. Electrical Characteristics (T_C = 25 °C unless otherwise noted)

DC Characteristics

Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	V _{GS} =-8V; I _{DS} =270mA	V _{DSS}		200		V
Gate Threshold Voltage	V _{DS} = 50V, I _D = 270mA	V _{GS} (th)	-4		-2	V
Gate Quiescent Voltage	V _{DS} =50V, I _{DS} =300mA, Measured in Functional Test	V _{GS(Q)}		-3.2		V

Functional Tests (In Innogration broadband Test Fixture, 50 ohm system) : $V_{DD} = 50 \text{ Vdc}$, $I_{DQ} = 300 \text{ mA}$, f = 1030 MHz, Pulse CW

Characteristic	Symbol	Min	Тур	Max	Unit
Power Gain @ Psat	Gp		14		dB
Drain Efficiency@Psat	Eff		55		%
Saturated power	Psat		2000		W
Input Return Loss	IRL		-7		dB
Mismatch stress at all phases(No device damage)	VSWR		10:1		Ψ

Reference Circuit of Test Fixture Assembly Diagram

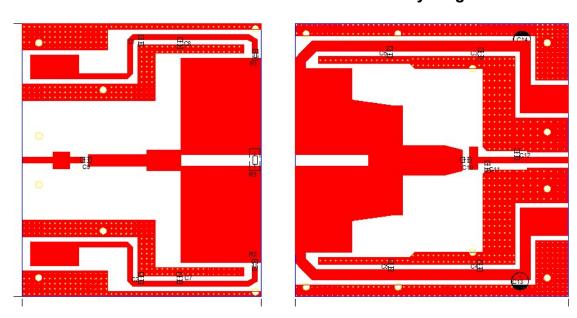


Figure 1. Test Circuit Component Layout

Table 5. Test Circuit Component Designations and Values

Component	Description	Suggested Manufacturer
C1~C4	10uF	10uF/100V
C5~C8	82pF	MQ101111
C9	39pF	MQ101111
C10	39pF	MCM-1-300V-D-390J
C13,C14	4700uF/63V	Electrolytic Capacitor
C11,C12	1.5pF	MQ102525
R1,R2,R3	10 Ω	Chip Resistor
PCB	30mil	Rogers4350

TYPICAL CHARACTERISTICS

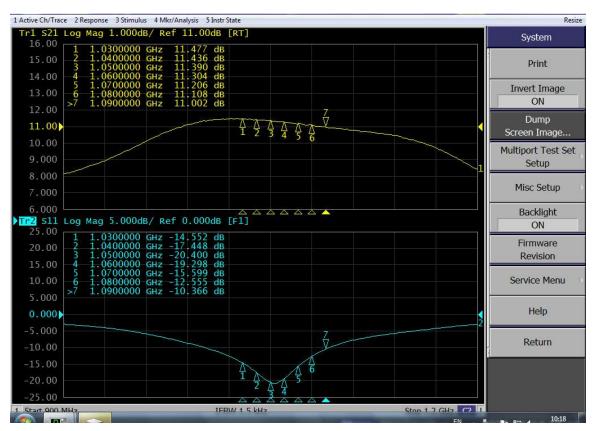
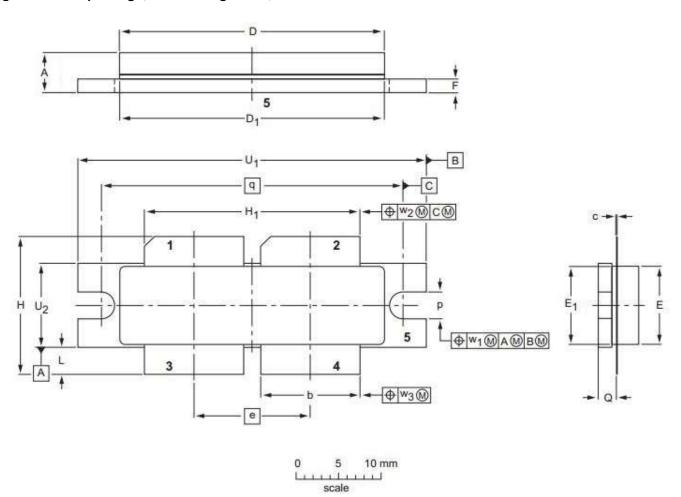



Figure 3. Network analyzer output S11/S21 at Idq=1A

Package Outline

Flanged ceramic package; 2 mounting holes; 4 leads (1, 2—DRAIN, 3, 4—GATE, 5—SOURCE)

UNIT	Α	b	С	D	D ₁	е	E	E ₁	F	Н	H ₁	L	р	Q	q	U ₁	U ₂	W ₁	W_2	W_2						
Mm	4.7	11.81	0.18	31.55	31.52	13.72	9.50	9.53	1.75	17.12	25.53	3.48	3.30	2.26	35.56	41.28	10.29	0.25	0.51	0.25						
IVIIII	4.2	11.56	0.10	30.94	30.96	13.72	9.30	9.27	1.50	16.10	25.27	2.97	3.05	2.01		41.02						41.02	10.03	0.25	0.51	0.25
Inches	0.185	0.465	0.007	1.242	1.241	0.540	0.374	0.375	0.069	0.674	1.005	0.137	0.130	0.089	1 400	1.625	0.405	0.01	0.02	0.01						
inches	0.165	0.455	0.004	1.218	1.219	0.540	0.366	0.365	0.059	0.634	0.995	0.117	0.120	0.079	1.400	1.615	0.395	0.01	0.02 0	0.01						

OUTLINE		REFERENCE		EUROPEAN	ISSUE DATE	
VERSION	IEC JEDEC		JEITA	PROJECTION	IOOOL DATE	
PKG-D4E					03/12/2013	

S3Q122K0RVP GaN TRANSISTOR

Document Number: S3Q122K0RVP Preliminary Datasheet V1.0

Revision history

Table 6. Document revision history

Date	Revision	Datasheet Status
2023/11/14	Rev 1.0	Prliminary Datasheet

Application data based on TC-23-74

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.