Innogration (Suzhou) Co., Ltd.

1800-2200MHz, 50W, 28V RF LDMOS FETs

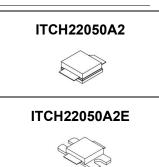
Description

The ITCH22050A2 is a 50-watt, internally-matched LDMOS FETs, designed for cellular and communication with frequencies from 1800 MHz to 2200 MHz. It can be used in Class AB/B and Class C for all typical modulation formats.

•Typical Performance (On Test Fixture with device soldered):

VDD = 28 Volts, I_{DQ} = 400 mA, Pulse CW, Pulse Width=20 us, Duty cycle=10%

Frog	Pulse CW Signal ⁽¹⁾			P _{avg} =40.0dBm WCDMA Signal ⁽²⁾			
Freq (GHz)	Gain_P1 (dB)	P3dB (dBm)	P3dB (W)	Gp (dB)	η ₀ (%)	ACPR₅м (dBc)	
1.98	18.02	48.51	71.0	19.26	27.56	-34.11	
1.995	17.84	48.38	68.8	19.47	27.93	-33.08	
2.01	18.55	48.23	66.6	19.62	28.35	-33.61	


Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Internally Matched for Ease of Use
- Excellent thermal stability, low HCI drift

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant

Table 1. Maximum Ratings

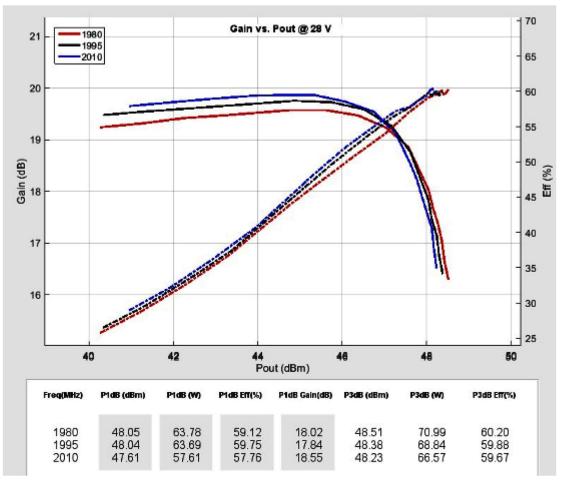
Rating		Symbol		Value		Unit	
DrainSource Voltage		V _{DSS}		65		Vdc	
GateSource Voltage		V _{GS} -10		10 to +10		Vdc	
Operating Voltage		DD		+32		Vdc	
Storage Temperature Range		stg	-65 to +150			°C	
Case Operating Temperature		T _c -		-55~+150		°C	
Operating Junction Temperature		L		+225		°C	
Table 2. Thermal Characteristics							
Characteristic		Symbol Value		Value	Unit		
Thermal Resistance, Junction to Case	D		1.8			0000	
T_C = 87°C, T_J =175°C, DC test	Rt	Rejc 1.8		1.0		°C/W	
Table 3. ESD Protection Characteristics							
Test Methodology		Class					
Human Body Model (per JESD22A114)		Class 2					
Table 4. Electrical Characteristics (TA = 25 $^\circ\!\!\!\!\!^\circ$ ur	nless otherwise r	noted)					
Characteristic		Symbol	Min	Тур	Max	Unit	
DC Characteristics							
Zero Gate Voltage Drain Leakage Current					100		
(V _{DS} = 65V, V _{GS} = 0 V)		DSS			100	μA	

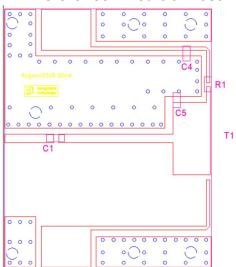
Innogration (Suzhou) Co., Ltd.

Document Number: ITCH22050A2 Product Datasheet V1.0

Zero Gate Voltage Drain Leakage Current				1	
(V _{DS} = 28 V, V _{GS} = 0 V)	IDSS			1	μΑ
GateSource Leakage Current				1	μΑ
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}				
Gate Threshold Voltage			2.0		v
$(V_{DS} = 28V, I_D = 450 \ \mu A)$	V _{GS} (th)				
Gate Quiescent Voltage	V _{GS(Q)}		2.8		v
(V_{DD} = 28 V, I_D = 400 mA, Measured in Functional Test)			2.0		v
Functional Tests (In Innogration Test Fixture, 50 ohm system) V_{DD}	= 28 Vdc, I _{DQ} = 400 n	nA, f =2000 M	Hz, CW Signa	I Measuremer	its.
Power Gain @ P _{1dB}	Gp		18		dB
1 dB Compression Point	P _{-1dB}		47		W
Drain Efficiency@P _{1dB}	η _D		55		%
Input Return Loss	IRL		-7		dB
.oad Mismatch (In Innogration Test Fixture, 50 ohm system):	V_{DD} = 28 Vdc, I_{DQ} = 4	00 mA, f = 20	00 MHz		
/SWR 10:1 at 50W pulse CW Output Power No Device Degradation					

TYPICAL CHARACTERISTICS




Figure 2. Power Gain and Drain Efficiency as function of Power Out

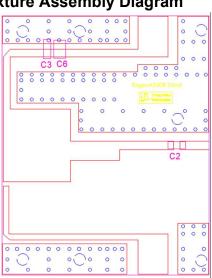
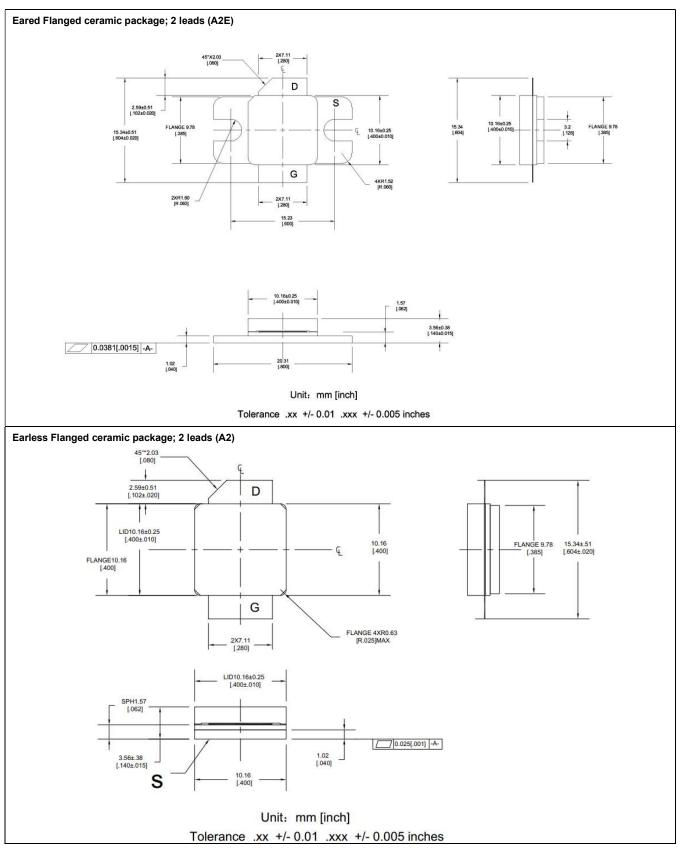

Innogration (Suzhou) Co., Ltd.

Figure 3. S11 and S21 of Network analyzer output



Part	Quantity	Description	Part Number	Manufacture	
C1,C2,C3,C4	4	20pF High Q	251SHS200BSE	TEMEX	
		Capacitor			
C5	1	1.5pF High Q	251SHS1R5BSE	TEMEX	
		Capacitor			
C6	1	10uF MLCC	GRM32EC72A106M	Murata	
			E05		
R1	1	10 Ω Power	ESR03EZPF100	ROHM	
		Resistor			
T1	1	50W LDMOS	ITCH22050A2E	Innogration	
		Transistor			

Package Outline

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2023/11/2	Rev 1.0	Product Datasheet

Application data based on LWH-23-20

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.