2500W, 50V High Power RF LDMOS Paired FETs

Description

The MO012K5VPX is a 2500W capable, highly rugged, Push pull and unmatched LDMOS FET, designed for commercial and industrial applications with frequencies HF to 150MHz. It is featured for industry leading high power and high ruggedness, suitable for Industrial, Scientific and Medical application, as well as HF communication, VHF TV and Aerospace applications.

MO012K5VPX

Typical performance(on 100MHz narrow band application board with devices soldered)
V_{DS}=50V,I_{DQ}=200mA, CW,

Vds	Pin(dBm)	Pout(W)	Gain(dB)	Eff(%)
46	43.53	2152	19.8	76
50	44.5	2570	19.6	76
55	44.5	3006	20.28	73

Typical performance(on 13.56MHz narrow band application board with devices soldered)

V_{DS}=50V,I_{DQ}=200mA, Pulsed CW, 50% duty cycle, 500us pulse width

Vds	Pin(dBm)	Pout(W)	IDS(A)	Gain(dB)	Eff(%)
36	37	1250	20.9	24	81
40	37	1500	23.1	24.8	80
45	37	1900	25.8	25.8	82
50	37	2250	28.5	26.5	78

- ✓ For load varied applications like 13.56/27.12/40.68MHz etc RF generator used for semiconductor or solar panel etc, it is recommended to run device at lower voltages according to different load conditions for ruggedness margin.
- ✓ For load fixed and good matching application like 88-108MHz FM radio application, it is recommended to run device at standard 50V to maximize its power output.

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Excellent thermal stability, low HCl drift

Suitable Applications

- 30-88MHz (Ground communication)
- 54-88MHz (TV VHF I)
- 88-108MHz (FM)
- 136-174MHz (Commercial ground communication)

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant
- Laser Exciter
- Synchrotron
- MRI
- Plasma generator
- Weather Radar

Table 1. Maximum Ratings

-			
Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+140	Vdc
GateSource Voltage	V _{GS}	-10 to +10	Vdc
Operating Voltage	V_{DD}	+55	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C

Document Number: MO012K5VPX Preliminary Datasheet V1.0

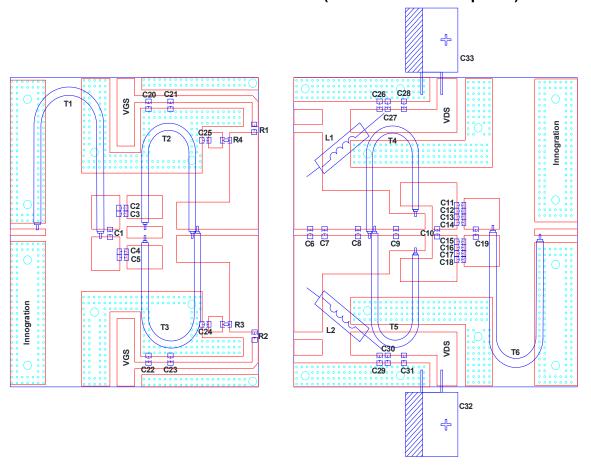
	1		1
Operating Junction Temperature	T _J	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Transient thermal impedance from junction to case	74	0.045	2000
Tj = 85° C; tp = 100 us; Duty cycle = 10 %	Zth	0.015	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2


Table 4. Electrical Characteristics ($T_A = 25$ °C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
DC Characteristics (per half section)					
Drain-Source Voltage	V _{(BR)DSS}		140		V
V _{GS} =0, I _{DS} =1.0mA	V (BR)DSS		140		V
Zero Gate Voltage Drain Leakage Current				1	
$(V_{DS} = 75V, V_{GS} = 0 V)$	I _{DSS}			'	μΑ
Zero Gate Voltage Drain Leakage Current				1	
$(V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V})$	I _{DSS}			ı	μΑ
GateSource Leakage Current	I _{GSS}			1	μΑ
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	IGSS			ı	μΑ
Gate Threshold Voltage	V _{GS} (th)		2.0		V
$(V_{DS} = 50V, I_D = 600 \mu A)$	V GS(UI)		2.0		V
Gate Quiescent Voltage	$V_{GS(Q)}$		3.06		V
$(V_{DD} = 50 \text{ V}, I_D = 300 \text{ mA}, \text{Measured in Functional Test})$	V GS(Q)		3.00		v

Load Mismatch (In Innogration Test Fixture, 50 ohm system): V_{DD} = 50 Vdc, I_{DQ} = 300 mA, f = 108MHz, pulse width:100us, duty cycle:10%,

65: 1, at 2500W Pulsed CW Output Power	No Device Degradation
--	-----------------------

Reference Circuit of Test Fixture (100MHz Power Amplifier)

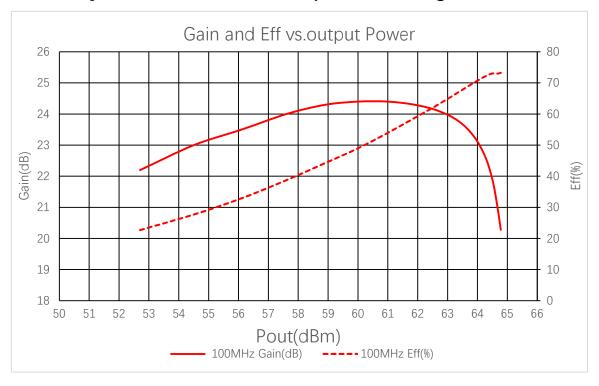
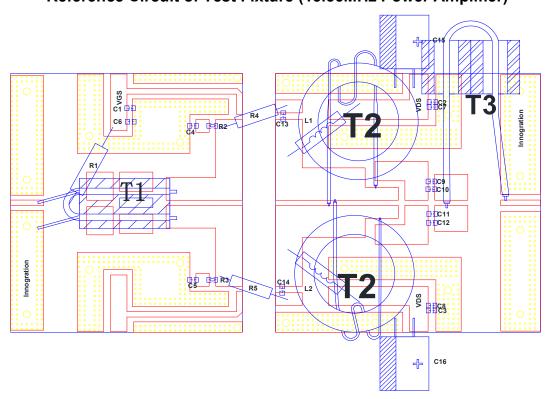


Table 5. Test Circuit Component Designations and Values


Component	Description	Suggestion
C1,C7	68pF	ATC800B
C2,C3,C4,C5,C11,C12,C13,C14,C15,C16,	1000pF	DLC70B
C17,C18,C21,C23,C26,C27,C29,C30		
C6	20pF	DLC70B
C8,C9	24pF	DLC70B
C10,C19	3pF	DLC70B
C20,C22,C24,C25,C28,C31	10uF	10uF/100V
C32,C33	4700uF/63V	4700uF/63V
R1,R2	Chip Resistor,200ohm	1206
R3,R4	Chip Resistor,10ohm	1206
T1	50ohm,Line length=135mm	SF-086-50
T2,T3	25ohm,Line length=135mm	SF-086-25
T4,T5	12.5ohm,Line length=135mm	SFF-12.5-3
T6	17ohm,Line length=170mm	SFF-17-1.5
L1,L2	6 turns, Inside diameter 5mm	

TYPICAL CHARACTERISTICS

Figure 1: Pulsed CW Gain and Power Efficiency as a Function of Pout @100MHz at 55V

Reference Circuit of Test Fixture (13.56MHz Power Amplifier)

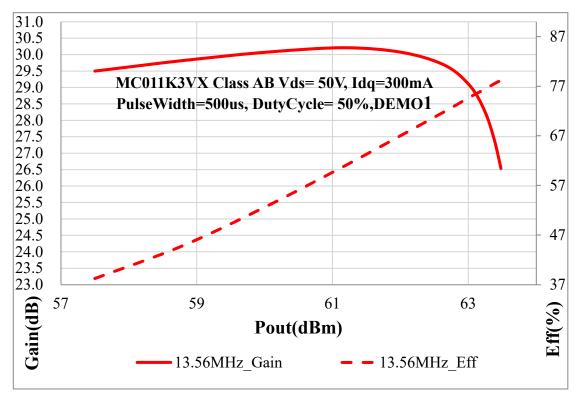
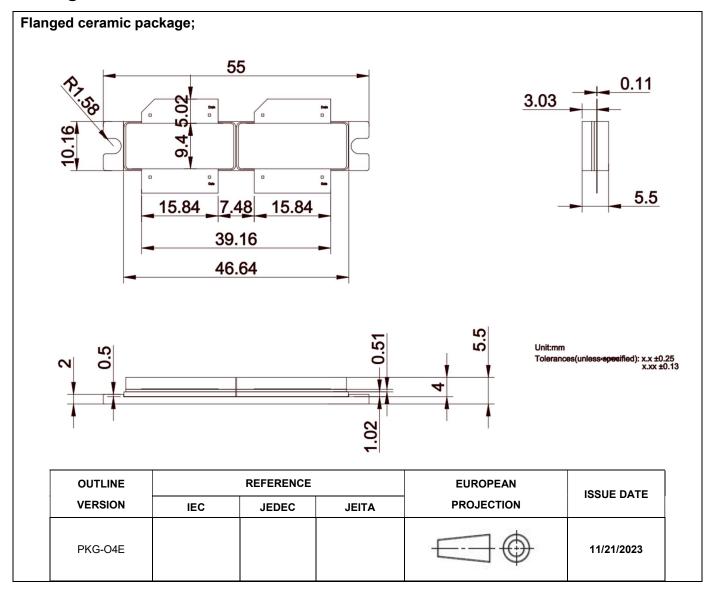


Table 6. Test Circuit Component Designations and Values


Part	description	Model
C1,C2,C3,C4,C5	10uF/100V	Ceramic multilayer capacitor
C6~C14	10nF	Ceramic multilayer capacitor
C15,C16	4700uF	63V/4700uF
R1	360 Ω	Plug-in electric resistance
R2,R3	220 Ω *4	Chip Resistor
R4,R5	186 Ω	
T1	4:1	BN-43-3312
T2	12.5ohm/450mm	FT-50-43
Т3	12.5ohm/300mm	RF-800-1708
L1, L2	35turns,D=5mm d=1.5mm DIY air core inductance	
PCB 0.762mm [0.030"] thick, εr=3.50		0, Rogers 4350B, 1 oz. copper

TYPICAL CHARACTERISTICS

Figure 2: Pulsed CW Gain and Power Efficiency as a Function of Pout @13.56MHz at 50V

Package Outline

Document Number: MO012K5VPX Preliminary Datasheet V1.0

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2023/11/24	Rev 1.0	Preliminary datasheet creation

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.