
MQ011K3VPX LDMOS TRANSISTOR Document Number: MQ011K3VPX

1300W, 50V High Power RF LDMOS FETs

Description

The MQ011K3VPX is a 1300-watt capable, high performance, unmatched LDMOS FET, for wide-band commercial and industrial applications with frequencies HF to 150MHz. It can be used for both CW and pulse application.

It is featured for high power and high ruggedness, suitable for Industrial, Scientific and Medical application, as well as FM radio, VHF TV applications.

Typical Performance (On Innogration fixtures with device soldered):

 V_{DD} = 50 Volts, I_{DQ} = 100 mA, CW

Freq(MHz)	Pin (W)	Pout(W)	Gain(dB)	Eff(%)
13.56	18	1400	18.5	80
85	20	1300	18	80
100	25	1300	17	79

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- On chip RC network enable high stability and ruggedness
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Excellent thermal stability, low HCI drift
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	140	Vdc
GateSource Voltage	$V_{\sf GS}$	-7 to +10	Vdc
Operating Voltage	V_{DD}	+55	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	Tc	+150	°C
Operating Junction Temperature	T,	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case ,Case Temperature	RеJC	0.11	°C/W
80°C, 1300W CW, 50 Vdc, IDQ = 100 mA	K#JC	0.11	
Transient thermal impedance from junction to case	746	0.03	0000
Tj = 150° C; tp = 100 us; Duty cycle = 20 %	Zth	0.03	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2

Table 4. Electrical Characteristics (TA = 25 $^{\circ}$ C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
----------------	--------	-----	-----	-----	------

MQ011K3VPX LDMOS TRANSISTOR Document Number: MQ011K3VPX Preliminary Datasheet V1.0

DC Characteristics (Per Side)

Drain-Source Voltage	V _{(BR)DSS}		140		V
V _{GS} =0, I _{DS} =18.0mA	▼ (BR)D33		1.10		•
Zero Gate Voltage Drain Leakage Current				1	
$(V_{DS} = 50V, V_{GS} = 0 V)$	I _{DSS}				μΑ
Gate—Source Leakage Current				4	
$(V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}			1	μΑ
Gate Threshold Voltage	\/ (4b)		2.6		V
$(V_{DS} = 50V, I_D = 600 \mu A)$	V _{GS} (th)	2.0			V
Gate Quiescent Voltage	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		3.2		V
$(V_{DD} = 50 \text{ V}, I_D = 200 \text{ mA}, \text{Measured in Functional Test})$	$V_{GS(Q)}$		3.2		V
Common Source Input Capacitance	C _{ISS}		620		pF
(V_{GS} = 0V, V_{DS} =50 V, f = 1 MHz) Each section side of device					
measured					
Common Source Output Capacitance	Coss		130		pF
(V_{GS} = 0V, V_{DS} =50 V, f = 1 MHz) Each section side of device					
measured					
Common Source Feedback Capacitance	C _{RSS}		2.8		pF
(V_{GS} = 0V, V_{DS} =50 V, f = 1 MHz) Each section side of device					
measured					

Reference Circuit of Test Fixture (88-108MHz)

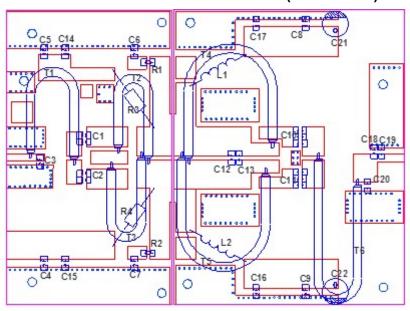
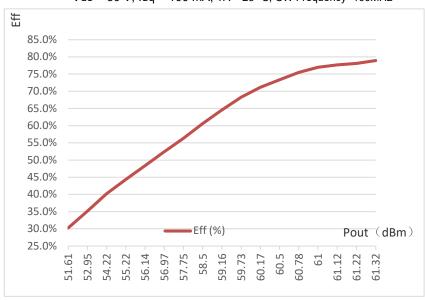


Figure 1. Test Circuit Component Layout

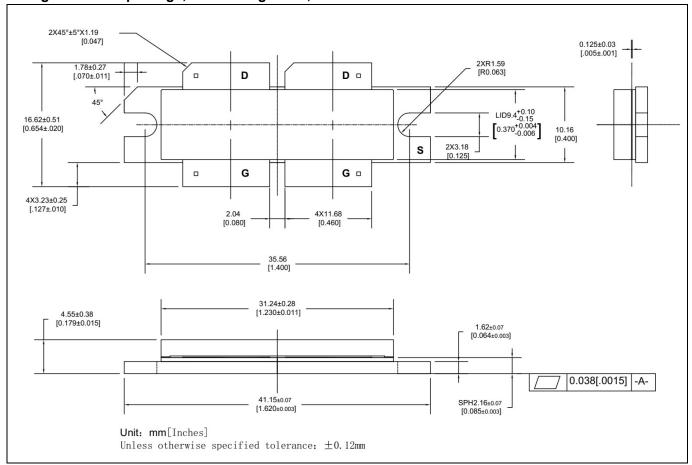
Part	description	Model
C1, C2, C6, C7, C10, C11, C16, C17	470PF	DLC70B
C3	1.5PF	DLC75D
C4, C5, C6, C7, C8, C9	10UF	100V/10UF
C10,C11	470PF*3	DLC70B


MQ011K3VPX LDMOS TRANSISTOR Document Number: MQ011K3VPX Preliminary Datasheet V1.0

C12	4.7PF	DLC70B
C13	10PF	MIN02-002CC100J-F
C14~C17	1000PF	DLC70B
C18	2.2PF	DLC70B
C19,C20	3.3PF	DLC70B
R1,R2	39Ω*2	0805
R3,R4	470Ω	1W/470Ω
L1, L2	50nH	DIY
T1	50Ω,150mm	SF-086-50
T2,T3	25Ω,150mm	SFF-25-1.5
T4,T5	12.5Ω,170mm	SFF-12.5-1.5
Т6	50Ω,200mm	RG402-3

TYPICAL CHARACTERISTICS

Figure 2: Power Efficiency as a Function of Pout


Vds = 50 V, Idq = 100 mA, TA = 25 $^{\circ}$ C, CW Frequency=100MHz

MQ011K3VPX LDMOS TRANSISTOR Document Number: MQ011K3VPX Preliminary Datasheet V1.0

Package Outline

Flanged ceramic package; 2 mounting holes; 4 leads

OUTLINE		REFERENCE	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	1000E DATE
PKG-D4E					05/06/2020

MQ011K3VPX LDMOS TRANSISTOR Document Number: MQ011K3VPX

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2021/10/15	Rev 1.0	Preliminary Datasheet
2023/11/28	Rev1.1	Add more application data

Application data based on TC-23-20,HL-23-11

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration. Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose."Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.